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Abstract

We present a brief overview of some new methodologies for making
predictions on time-series data. These ideas stem from two rapidly
growing fields: nonlinear dynamics (chaos) theory and parallel
distributed processing. Examples are presented that show the
usefulness of such methods in making short-term predictions. It is
suggested that such methodologies are capable of distinguishing
between chaos and noise. Implications of these ideas and methods
in the study of weather and climate are discussed.

1. Introduction

One of the basic tenets of science is making predic-
tions. If we know previous behavior, how can we
predict future behavior? The approach in modern
meteorology, like many sciences, requires two steps:
constructamodel based on theoretical considerations
and use measured data as initial input. Since many of
the underlying theoretical principles in meteorology
are known, model construction has been and contin-
ues to be a primary area of research for meteorolo-
gists.

Today’'s numerical weather-prediction models for
forecasting tomorrow’s weather (also for climate pre-
diction) solve a set of partial differential equations
describing fluid flow over a rotating globe. The prob-
lem in prediction may not lie here. However, as was
stated by Thompson (1957), significant problems may
arise with the second step, where measured data are
used as initial input to the model. Correct specification
of initial state demands the measurements of vari-
ables in a three-dimensional volume. Routine mea-
surements of relevant variables are taken at widely
spaced locations providing only a discrete initial state.
The spatially continuous differential equations simply
cannot operate on discrete initial input (Farmer and
Sidorowich 1987). Because of this inherent forecast-
ing limitation in fluid-flow problems, we are motivated
to try other approaches.

One class of alternative approaches is to build
models directly from the available data. For these
methods, the data, given as a time series, are usually

*Department of Meteorology, Florida State University, Tallahassee,
FL 32306

*Department of Geosciences, University of Wisconsin-Milwaukee,
Milwaukee, WI 53201

©1992 American Meteorological Society

Bulletin American Meteorological Society

considered as a single realization of a continuous
random process (see, e.g., Pandit and Yu 1983). As
Farmer and Sidorowich (1987) point out, this is appro-
priate when the randomness is a result of complex
interactions involving many independent and irreduc-
ible degrees of freedom. Although linear methods of
analyzing time series from weather and climate pro-
cesses have had some success, especially in regard
to relating cause and effect to physical phenomena,
their predictive power is limited. The predictive limita-
tion of linear methods is perhaps related to their
inability to model feedback dynamics of the weather
and climate systems (Farmer and Sidorowich 1988;
hereafter referred to as FS88).

In the last decade, advances in the theory of dy-
namical systems have demonstrated the existence of
dissipative systems whose trajectories that depict
their asymptotic final states are not confined in limit
cycles (periodic evolutions) or tori (quasi-periodic evo-
lutions), but in sets of the total available phase space,
which are not topological. These sets are fractal sets
and are often called strange attractors. The corre-
sponding dynamical systems are called chaotic sys-
tems and their trajectories never repeat. Thus, their
evolution is aperiodic but completely deterministic.
Because the evolution is aperiodic, any signal mea-
sured from a chaotic dynamical system “looks” quite
irregular and exhibits frequency spectra with energy at
all frequencies (broadband spectra) similar to those of
random signals (see Tsonis and Elsner 1989 for a
discussion of chaos and weather). Another important
propenty of chaotic dynamical systems and their strange
attractors is the divergence of initially nearby trajecto-
ries. Due to the action of the attractor, the evolution of
the system from two (or more) nearby initial conditions
will soon become quite different. Since the measure-
ment of any initial condition is subject to some error,
such a property imposes limits on long-term predic-
tion. Nevertheless, for a short time, nearby trajectories
may not diverge significantly, and thus, even though
each evolution might be quite complex, knowledge of
the dynamics and especially of the structure of the
attractor (e.g., dimensions, Lyapunov exponents) may
prove beneficial to the goal of short-term predictions.

For a system containing many irreducible degrees
of freedom, the linear statistical approach is probably
as good as any and may even be optimal (FS88). If,
however, the irregular behavior is a result of low-
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dimensional chaos, nonlinear models ought to be able
to do much better at prediction than simple linear
models. Infact, since chaos does not occur unless the
system is to some extent nonlinear, nonlinear models
are necessary to approximate chaotic dynamics.

The purpose of the present paper is to outline some
recent advances in modeling time series and to dem-
onstrate, through the application of a particular tech-
nique, their usefulness in making short-term predic-
tions over standard autoregressive models. The paper
is not intended to be definitive; rather, it serves as an
interim report on time-series modeling efforts currently
being explored in the physics and applied mathemati-
cal communities. No attempt is made to sort out the
particular advantages and disadvantages of the vari-
ous methods mentioned. More details concerning
particular methods and applications are given in some
of the references provided.

The problems of weather and climate forecasting
offer a unique arena for testing and developing
nonlinear prediction algorithms, not only because
current numerical weather-prediction models are lim-
ited to some extent in their prediction capabilities, but
because long-term reliable observational records have
recently been made available for climate research.
Diagnostic studies with these data utilizing nonlinear
prediction schemes are a required step in the direction
of understanding and quantifying the complexity of the
global weather and climate systems.

2. Nonlinear prediction

The term “nonlinear prediction” covers a broad spec-
trum of methodologies. Our focus here is on dynamical
state-space models. The two components of such
models, determinism and state-space representation,
can be considered separately. In fact, more familiar in
meteorology are two variants of these models contain-
ing one or the other component. The analog method,
suggested by Lorenz (1969), while not strictly limited
to time-series data, is essentially a deterministic non-
state-space model. It is based on the idea of finding a
historical weather pattern (analog) that closely re-
sembles the current weather. The evolution of the
historical analog provides a model for the evolution of
the present weather. Although the method, as tried by
Lorenz, was successful in estimating practical limits
on atmospheric predictability, it was largely unsuc-
cessful for operational forecasting due to the lack of an
adequate history of large-scale weather patterns. With
longer data archives now available and a focus on
limited areas, the analog method has reemerged and
appears to hold promise for weather forecasting (e.g.,
Van den Dool 1989; Toth 1989).
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Another class of related nonlinear models are the
threshold autoregressive (AR) models (Tong and Lim
1980; Tong 1983). These models rely on a state-
space representation but are essentially statistical,
having a deterministic component limited to a single
variable. While this is a considerable improvement (for
modeling chaos) over the strictly statistical linear rep-
resentation of the traditional AR models, it may not
provide enough nonlinearity for geophysical signals in
general. Recently, Zwiers and von Storch (1990) have
shown that such models are quite useful for modeling
the Southern Oscillation.

Building a dynamical state-space model from time-
series data requires two steps: finding an appropriate
state-space reconstruction, and then choosing a
nonlinear representation that maps visited regions
into regions not yet visited in the reconstructed space.
The state space can be replaced by the phase space
using the method of delays. This is done by taking a
scalar time series x(f) and its successive time shifts as
coordinates of a new vector time series given by

X() = (X (1), X (440, X (¢4 (0=1)0), (1)

where nis the dimension of the vector X(t) and tis a
time delay taken to be some suitable multiple of the
sampling time Af (see Packard et al. 1980; Takens
1981). Thus, for an n-dimensional phase space, a
“cloud” of points will be generated. From this cloud the
various dimensions and exponents can be calculated.
The proper choice of 1 to obtain a suitable reconstruc-
tion has been the subject of considerable debate. In
principle, t© can be any length. However, if it is too
small, then, in general, x(t) will be nearly equal to x(¢
+ 1) and not enough separation will exist between the
chosen coordinates. If the dynamics take place on an
attractor of dimension N, then it is necessary for
determinism that n > N (i.e., the attractor must be
embedded in atleastits dimension, otherwise it fills the
embedding space, thus behaving like a random pro-
cess) (FS88). For proper reconstructions, Takens
(1981) showed that n ~ 2N + 1 is sufficient at least in
principle.

There are other ways to construct a phase space.
The use of derivatives, whereby the coordinates of the
phase space are successively ordered higher deriva-
tives instead of discrete time shifts, is an alternative. In
fact, this is the underlying intuitive concept of the
method of delays, but it is not recommended in prac-
tice, except for perhaps extremely clean data, since
differentiation ampiifies noise. A better alternative is
the method suggested by Broomhead andKing (1986),
whereby the Karhunen-Loeve principal value decom-
position is applied to the vector time series in Eq. (1).
The procedure, called singular-spectrum analysis
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Fic. 1. An illustration of how local approximation works (after
FS88). The present state x() and its unknown future value x{i + T)
are represented by open circles. The black dots inside the circle
define the neighborhood of x({) in this hypothetical state space. To
make a prediction, we determine an appropriate mapping that takes
the points in the neighborhood to states they move to a time Tlater,
and then evaluate the mapping.

(SSA), is to extract the eigenvalues and eigenvectors
of the covariance matrix of the vector series. The

eigenvalues are the root-mean-square projection of

the n-dimensional delay coordinate time series onto
the orthogonal eigenvectors and, thus, represent a
natural means of resolving the cloud of points in a
higher dimensional space. In addition to providing a
proper reconstruction of state space, SSA appears to
be a useful tool for separating signal from noise in
natural time series (Vautard and Ghil 1989; Ghil and
Vautard 1991; Elsner and Tsonis 1991).

Inany case, once we have reconstructed the attractor
we can begin to think how we will improve short-term
prediction. If an underlying deterministic mechanism
exists, then the order with which the points appear in
the cloud will also be deterministic. Thus, we may be
able to somehow extract the rules that determine
where the next point willbe located in the phase space,
and hence obtain a very accurate prediction. For
example, consider the sequence x(t): 0.12, 0.4224,
0.4759128, 0.094028, 0.3407468, 0.8985536,
0.36462, 0.9266888, . . . . If we plot x(t) versus x(t +
1), we find that the points fall on a very well-defined
parabola, the expression of which we can easily find.
Thus, x . = f(x) can be estimated and used for
predictions [the reader may recognize this sequence
as the logistic map x_, = 4x (1 - x)].

The methodology can be conceptualized by con-
sidering Fig. 1, where portions of a trajectory are
shown in state space and a terminal point (present
state) is denoted by an open circle. The solid circles
indicate neighbors of the current state, and the arrow-
heads indicate movement of the neighbors through a
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local section of the embedding space. By finding a
suitable function (linear or nonlinear) that describes
how the neighbors advance, a prediction for the cur-
rent state can be made. This is called local approxima-
tion, as compared with global approximation, which
amounts to finding a representation over the entire
attractor.

As FS88 point out, finding an appropriate functional
representation at this point, either local or global, is
largely a matter of trial and error. Some of the ideas
currently being explored include polynomials (Farmer
and Sidorowich 1987), radial basis functions (Casdagli
1989), or simpler variants (Sugihara and May 1990;
Linsay 1991). Another such approach, which we will
discuss in more detail, employs what are known as
artificial neural networks. Falling within a class known
as connectionist models, artificial neural networks or
simply neural nets are mathematical models formu-
lated and solved on conventional digital computers.
They were originally designed to mimic some func-
tions of the nervous system of animals or humans and
can be viewed as another type of functional represen-
tation of neighbors in state space. We stress that
despite the promise of such prediction methods, work
along these lines is still in its infancy and no single
method has emerged as fundamentally superior.

3. Neural networks

Let us introduce the philosophy behind neural net-
works by presenting a highly simplified example. This
example is a modification of an example presented by
Owens and Filkin (1989). Let us consider global pre-
cipitation over the past five years, with the precipi-
tation for 1990 being what we are interested in predict-
ing. Under such an arrangement, we say that we have
one training pair consisting of the five inputs, p[i], and
a single output node, Q. The relationship between the
inputs and the output is shown in Fig. 2. Such a figure
is often referred to as the architecture of the network
and for this example consists of two layers, an input
layer and an output layer. The five inputs can be
thought of as a five-component state vector, with the
value of each component given as the amount of
precipitation for the year. Usually, the inputs are
scaled to the range 0 < p[i] < 1. The value P is
constructed as the inner product given by the sum of
the inputs multiplied by their corresponding connec-
tion weights wi]:

P=Zwlilp[i]. (2)
The summation in the equation is over the five inputs.
The output Qis obtained by passing the inner product
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p[1985]
p[1986]

whereby convergence to a root is
achieved by successive evaluations
of the function and its derivative.
For the case of more than one train-
ing pair, the equation is generalized
by summing over all training pairs.

p[1987]

f(x)

—> Q Training occurs in discrete itera-

p[1988]

p[1989]

inputs weights

tions, with each iteration requiring
one presentation of all training pairs
tothe network. The network “learns”
by presenting the (P, Q) pair se-
quentially with a number of training
pairs relating the values of the input
to a corresponding value of the out-
put. To ensure convergence of the
integration scheme, the learning rate

output

Fia. 2. Schematic (architecture) of a two-layer neural network. Each of the five inputs has
avalue p[]corresponding to the amount of global precipitation for that year. The output has
a value corresponding to the amount of global precipitation for 1990. The weights (w[ ])
indicate the relative strength of connections between inputs and the output. The input
values are combined with the weights by an inner product to give a value P. Inputs are taken

to outputs using a nonlinear squashing function such as tanh.

Pthrough a nonlinearfunction f(x), sometimes called
the squashing function. The squashing function has
limits O < f(x) < 1, which guarantees that the output Q
is limited in range regardless of the value of P. For this
example, we have a single input—output training pair
denoted as (P, Q). All the connection weights are then
varied to minimize the squared error, calculated as the
difference between the network’s predicted output
and the actual value.

In our simple, one-pair, two-layer network shown in
Fig. 2, the training pair associates one specified set of
inputs, for example, p [1985], p [1986], p [1987],
p[1988], p[1989], with a single output Q. The error to
be minimized is the squared difference between the
actual value, p [1990], and the network value, Q:

E=(p[1990] - Q%> (3)
The weights are changed by first finding the gradient
of E with respect to w[i] and then adjusting w[i] to
force E toward smaller values. This is accomplished
with the help of a forward-Euler integration scheme:

wlil™ =wli]"+nAawli],
where

4
Awli]=-0E/wli].

w[i]"is the weight at iteration number n, and n is the

learning rate. This is analogous to finding the root of a
polynomial using a generalized Newton’s method,
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1 must be small. However, using a
stiffintegration technique can greatly
improve the learning rate (Owens
and Filkin 1989).

In general, neural network pro-
grams are built around the concept
of adjustable weights that take in-
putsto outputs. Each weight carries
information that indicates how
strongly the input is connected to the output. We can
now proceed in presenting a formal definition of neural
networks. A simple neural network model can be
written as

x[il=x(t-it")

z=f(Ewl[ilx[i]), i=1,n, (5)
where f(x) is a nonlinear sigmoidal function such as
the hyperbolic tangent and where the x [i I's are the
inputs, which in effect form the coordinates of a state
space. The parameter 1’ is usually taken equal to 1,
but it can assume other values as well. Note that the
dimensionality of this space is equal to the number of-
inputs, n. Thus, in the example above, the dimension-
ality is 5. If we had used only 4 years prior to 1990, then
the dimensionality would have been 4. in a way, the
number of inputs defines an embedding dimension.
This embedding dimension, however, may not be the
same as the embedding dimension of the Takens
theorem. While intuitively it seems that those two
embedding dimensions should be related, up to this
point this relation has not been established. In prac-
tice, one uses as many inputs as it takes in order to
obtain the desired results. Therefore, even though the
a priori knowledge of the dimension of the underlying
attractor may suggest a first guess for the number of
inputs, its exact value is not required.

Starting with arbitrary values for the weights (w[i})
an output (2) is calculated and then compared with the
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actual value x(t+ T). The squared error between the
model output and the actual value, given by

E=[xt+T)- 2P, (6)

is subsequently used to change the weights. This is
done by first calculating the derivatives of the error with
respect to all the weights (8E/dw[i]). Then, if increas-
ing a given weight leads to more error, the weight is
adjusted downward. Otherwise, ifincreasing the weight
leads to less error, the weight is adjusted upward.
Since information about the error at the output layer is
used to modify the weights at the input layer, the
method is called “back propagation” (Rumelhart et al.
1986). The procedure is continued until all the weights
settle down and the error converges to below some
prescribed tolerance. Commonly, the initial weights
are chosen as uniformly distributed random numbers;
however, if prior information exists, a better initial
guess can be made (Werbos 1990).

Often, when the system of interest is sufficiently
complex (involving many degrees of freedom), a sec-
ond layer, called a hidden layer, is added to the
network (see Fig. 3). The multilayer neural network
can then be written as

x[il=x(t-it")
yUl=fEwlijlxIil) (7)
z=fEw[jlyli).

teristics of the underlying system’s dynamics and
make short-term predictions based on that knowledge
without providing a physical understanding of the
mechanisms that might be operating within the sys-
tem. However, successful predictions with such mod-
els can lead to useful hypotheses concerning, for
example, why certain inputs are associated with stron-
ger connection weights compared to others—which
can readily be interpreted as a hypothesis concerning
the physical nature of the system. Those that appreci-
ate the above views may also appreciate the views of
Wiener (1956, 1961).

4. Examples

In this section we present three examples showing the
effectiveness of using a neural network for making
predictions on time-series data. Each example uses a
different dataset. For the first example, we use data
generated artificially; for the second example, we use
data generated from a controlled laboratory experi-
ment; and for the third example, we use data observed
in nature. The neural network architecture we employ
for each example consists of three layers: input,
hidden, and output. Learning is achieved using the
method of back propagation, as was discussed in the
previous section. Training is performed on the first part
of the time series, with subsequent predictions made

Connection weights are specified
between input and hidden values
(wl[i, j]) and between hidden values
and the output (w [j]). The weight-
modifying scheme described above
is applied in the same manner to the
multilayer network.

In summary, with the help of
known outputs, the network, initially
set to a randomly chosen state,
modifies its structure (changes the
weights) in such a way as to im-
prove its performance over the train-

x(t-1)

x(t-2)

ing set. If the network architecture is x(t-8)
rich enough (i.e., sufficient number
of both inputs and layers), this pro- INPUT

cedure will eventually lead the net-
work to a state in which inputs are

HIDDEN

OUTPUT

correctly mapped to outputs for all
chosentraining pairs (Keeler 1990).

It should be emphasized here
that neural networks, along with the
other dynamical state-space mod-
els, are phenomenological in that
they assess the qualitative charac-
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Fia. 3. Architecture of the neural network used in this study. The single output
corresponds to the fact that we are making predictions one step into the future. The number
of hidden values s set at three. Results from numerous trial runs indicated that adding more
hidden values did not significantly improve the network’s prediction capabilities. The
number of inputs varied for the different examples presented. Again, however, the model
was not sensitive to small changes in the number of inputs used. The values of the input
nodes are lagged values of the time series representing a reconstructed state space.
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vertical motion

hidden values. The single output

75 A ' ' ' ' represents some future value of
the time series we wish to pre-
50 t . dict.
< i The neural network architec-
3 o5 [ i ture is shown in Fig. 3. The in-
> puts are the components of a
‘g reconstructed n-dimensional
E 0 state space consisting of suc-
4 cessive time-delayed values of
S _os the series. The method is similar
= to the one used by Perrett and
=z van Stekelenborg (1990) to pre-
-50 ¢ ] dictannual sunspotnumbers. For
example, if we represent the se-
_75 , ) l ) ) , ) ries as x(t), where i=1,2, ..., L,
0 200 400 600 800 1000 thenwitht’=1, and using an 8-
dimensional phase space (i.e.,
Time Steps eight inputs) beginning with the
first value of the time series, the
first set of inputsis {x(1), x(2), ...,
Lorenz model X(8)}andthe outputwe are trying
75 - T ' T - to predict is x(9). Similarly, the
B second setof inputsis {x(2), x(3),
50 [ ] ...» X(9)} and the output we are
) trying to predictis x(10). Training
o continues over all training pairs
"; 25 ¢ 1 (set of inputs, output) for several
5 0 thousand iterations.
S 5 1e 3 g For the first example, we
> % generate a time series by nu-
g i merically integrating the Lorenz
5 —25 J1 system (Lorenz 1963) consist-
g Y eq 0 ing of three ordinary differential
50 F o & 0 ° 8 . o 0 9] equations describing convection
of a fluid, warmed from below in
. time. The system is given as
500 550 600 650 700 750 800 dx/dt = ax +ay
. dy/dt = —xz+bx-y (8)
Time Steps dz/dt=xy —cz,

Fic. 4. (a) Time series of convective motions, after all transients have died, generated by

numerically integrating the Lorenz system using a fourth-order Runge-Kutta scheme. The time
axisis inintegration steps and the magnitude of convection is on an arbitrary velocity scale. The
series displays chaotic oscillations. (b) Comparison of the actual time series (solid line) with a
neural network prediction (points). The number of inputs in the neural network is 8. The actual
time series represents a part of a novel portion (second half) of the convective signal. Predicted

values correspond quite well with actual values.

on the remaining values. For each example, the num-
ber of outputs is set at one, and the number of hidden
values is set at three, while the number of inputs
depends on the individual example. Numerous trial
runs indicated that the accuracy of prediction was not
sensitive to small changes in the number of inputs or
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where x is proportional to the
intensity of convective motion, y
is proportional to the horizontal
temperature variation, z is pro-
portional to the vertical tempera-
ture variation, and g, b, and care
constants. For a choice of con-
stants corresponding to sufficient heating, the convec-
tion will exhibit chaos. We use a fourth-order Runge—
Kutta integration scheme and constants a= 16.0, b=
120.1, and ¢ = 4.0. The time series of convective
motion (x component of the system), after all tran-
sients (104 iterations) have diminished, is shown in
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Fig. 4a. Positive values indicate

Lorenz model

upward motion in the fluid. We
take 1000 values from the time
series, train the network on the
first 500 values, and make pre-
dictions on the last 500 values.
The number of inputs in the net-
work was eight. Results of the
neural network at predicting one
step into the future (points) com-
pared withthe actual values (solid
line) are given in Fig. 4b. The
normalized root-mean-square

0.6 r

0.2

Correlation Coefficient

error (RMSE) between the ac-
tual and predicted values is
0.072, where zero implies a per-

0.0

-0.2

fect forecast. Clearly, the net-
work is capable of capturing the
underlying chaotic dynamics of
the system (see also Frison
1990a).

To assess the predictive abil-
ity of the neural network against
that of a standard statistical
model, we fit the first half of the
time series using an optimum
autoregressive process andthen
compare predictions on the second half of the series
from both models. For the autoregressive (AR) model,
the time series is viewed as a single realization of a
stochastic process, which is taken to be stationary and
having a Gaussian distribution. For model selection
we employed the Bayesian Information Criteria as
outlined in Katz (1982) and determined that the opti-
mum order of the AR model for the time series is 12.

Comparisons between the neural network and AR
models are made by quantifying how the prediction
accuracy (skill) decreases as predictions are made
further into the future. To do this we make a prediction
one step into the future and then use this predicted
value as one of the lagged inputs for the next predic-
tion, two time steps into the future. Similarly, the
prediction at this second time step, as well as the
previous time step, are used as lagged inputs for the
next prediction, three time steps into the future. Doing
this successively allows us to compute the correlation
coefficient between actual and predicted values as a
function of prediction time, where prediction time is
given as discrete time steps into the future. The
correlation coefficient between actual and predicted
values is defined in the standard statistical way and is
widely used as a measure of predictive skill (Anthes
1984). This procedure is followed for both the neural
network model and for the optimum AR modei.

Results are shown in Fig. 5. For the first few steps
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Time Steps

Fic 5. Correlation coefficients between actual values and predicted values as a function of
prediction time for the convective motions using a neural network model (solid line) and using
an optimum autoregressive model (dashed line). Prediction time is given as discrete time steps
into the future. A correlation coefficient of 1 corresponds to perfect prediction. The neural
network model clearly outperforms the autoregressive model.

into the future, predictions from both models are good
and the difference between the two models in terms of
predictive skill is small. In contrast, the neural network
makes significantly better forecasts than does the AR
model as prediction time increases. The predictive
skill on a nonuniform chaotic attractor will vary in time
(Nese 1989); however, by using the same segment of
the attractor to compare the models, as was done
here, we ensure a fair comparison. We note that the
AR model is essentially a linear model and therefore
incapable of capturing the inherent nonlinear nature of
such a record. Since the signal is, in fact, chaotic, we
cannot hope to make accurate predictions with any
model too far into the future. As we see, the predictive
skill of the neural network also drops to near zero after
a relatively short time.

Results similar to the above conclusions are ob-
tained when the y or z component of the system is
considered. This is not surprising, since every compo-
nentis the result of the global dynamics of the system.

We next turn our attention to data generated from a
controlled fluid dynamics experiment. The data were
recorded from a rotating, differentially heated annulus
of fluid. The experiments were performed at the Geo-
physical Fluid Dynamics Institute (GFDI) to study the
transition to turbulence in fluids. The experiment from
which the data were taken is described in detail by
Pfeffer etal. (1980a,b). For our purposes it is sufficient
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the last 500 values. The com-
plete record is shown in Fig. 6a
and a forecast one step into the
i future is shown in Fig. 6b. The
normalized RMSE between ac-
tual and predicted values one
step into the future is 0.065, indi-
1 cating very good predictions.
Shown in Fig. 7 is the correlation
coefficient between actual and
predicted values as a function of
prediction time for both the neu-
ral network and an optimum
fourth-order AR model. As was
) seen previously, for the first few

0 200 400 600

Samples

time steps into the future predic-
800 1000 tions from both models are good
and the differences between the
two models interms of predictive
skill is small. After that, however,
the neural network clearly out-

ec202
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27.5

27.0

Temperature (C)

26.5
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performs the linear AR model.
Here the number of inputs in the
model was 75.

i For the third example, we
take a time-series record of sea
surface temperaturesin degrees
C, constructed by proxy using
1 deep-sea ice-core records of
oxygen isotope concentrations.
Data are available for the period
of approximately 1700—700 thou-
sand years (kyr) before present
at a sampling rate of 2 kyr, for a
total of 498 values (Ruddiman et
A al. 1986). Similar records have

200

Samples

Fia. 6. (a,b) Same as figure 4(a,b), except that the time series represents temperatures (°C)
taken from a rotating, differentially heated fiuid in an annulus. The record is taken at middepth
in the fluid. The time axis is given in number of rotations times two. The experiment was
performed at the Geophysical Fluid Dynamics Institute. The number of inputs in the model is
75. The neural network makes excellent predictions one step into the future.

to say that the data recorded in time series represent
temperatures in degrees C at a single location near
middepth in the fluid. The temperature contrast from
the inner to outer wall of the annulus is held constant
at 10°C. Sampling rate is once every two rotations,
with each rotation analogous to one sidereal day.
As was done previously, we take 1000 values from
the time series, train the neural network on the first 500
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been used in climate research.
The complete time series is
shown in Fig. 8. We train the
neural network using eight input
values on the first 400 values
and make predictions on the re-
maining 98 values. The RMSE
between actual and predicted
values one time step into the
future is 0.170, indicating some
skill. For comparisons we again employ an optimum
fourth-order autoregressive model and compare cor-
relation coefficients between actual and predicted
values as a function of prediction time for both models
(Fig. 9). As was the case with the previous two ex-
amples, the neural network forecast demonstrates
considerably more skill than does the forecast using
an AR model, especially after the first few time steps.
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5. Spatial dynamics

The idea behind neural networks
and other such nonlinear predic-
tion methods is that if determin-
istic rules dictate the system,
then, even if the behavior is cha-
otic, the future may to some ex-
tent be predictable from the be-
havior of the past states of the
system that are similar to those
ofthe present (Sugihara and May
1990). The concept of using a
neural network to emulate com-

0.6

0.2 +

Correlation Coefficient

0.0

plex or nonlinear processes can
be extended to many types of

-0.2

problems beyond time-series
prediction. As long as a good
record of dynamical states is
known for the period of interest,
a neural network can learn to
simulate the behavior of the sys-
tem (Frison 1990b). One class
of problems we are currently
working on is the modeling of
spatial dynamics of satellite im-
agery from hurricanes and mesoscale convective
complexes (MCCs), where successive images repre-
sent past and present states of the system.

As noted by Maddox (1980), MCCs are convectively
driven organized weather systems whose physics are
not well understood, much less included in operational
convective parameterization schemes despite the fact
that they appear to be organized in a nonrandom
manner and evolve on scales large enough to be
resolved by current numerical forecast models. MCC
events are all characterized by similar life cycles.
Thus, regardless of the synoptic setting and internal
structure of MCCs, satellite data exhibit a generalized
consistent life cycle that reflects a meso-o—scale
organization (McAnelly and Cotton 1989). This sug-
gests the possibility of making use of past behavior of
such systems, as viewed from space for example, to
forecast future behavior, rather than relying solely on
numerical forecast models.

Lee et al. (1990) have already demonstrated the
usefulness of a neural network at distinguishing vari-
ous cloud types from satellite imagery. Each satellite
image of an MCC contains a wealth of information
regarding the underlying atmospheric structure of the
storm. A typical infrared image has a 4-km resolution,
and each pixel stores a brightness value between 0
and 256 depending on the radiation emission. For any
chosen brightness threshold, there willbe areas on the
image delineating regions above and below this level.

Bulletin American Meteorological Society

Samples

Fia. 7. Correlation coefficient as a function of prediction time as in Fig. 5, except for the
laboratory experiment data. The solid line represents predictions made with the neural network
and the dashed line represents predictions made with an optimum autoregressive model. Both
models do well in the short term; however, the network clearly outperforms the linear
autoregressive model as prediction time increases.

With successive images in time, changes in size and
shape of the regions represent an underutilized source
of dynamical information about the storm evolution. By
using pixel information as input, a neural network
model can be trained to learn the spatial evolution of
the storm as viewed from space, assuming we have
data from a large number (e.g., 100; Packard 1990) of
past storms.

6. Chaos and noise

Recently it has been suggested that certain nonlinear
prediction techniques are capable of distinguishing
between chaos and noise in time-series records
(Sugihara and May 1990). We demonstrate next that
neural networks share this capability by comparing
results of the Lorenz system with results from a model
trained on atime series generated from discrete points
on a sine wave, having a unit amplitude, and adding to
it at each step a uniformly distributed random variable
in the interval [-0.5, 0.5]. Such a time series may
display dynamical character similar to chaotic sys-
tems. Fourier analysis will result in spectra exhibiting
peaks superimposed on a continuous background,
and dimensional analysis may indicate anything from
a low-dimensional system (if noise is weak) to a
random signal (if noise is strong).

After training the neural network on the first half of
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Fic. 8. Time series of proxy sea surface temperature in °C for the period 1700—-700 thousand
years (kyr) before present, at intervals of 2 kyr. The length of the record is 498 values. Similar
records have been used in the study of climate dynamics.

how chaotic a system is. For
example, one measure of the
rate of degradation might simply
be how many prediction steps
are necessary before the corre-
lation coefficient between actual
and predicted values reaches
some nearly asymptotic value.
We note the loss of predic-
tive skill of the neural net-
work model on the proxy tem-
perature record (Fig. 9) is
suggestive of a chaotic sig-
nal. This result supports ear-
lier evidence of deterministic
chaos in climate (Nicolis and
Nicolis 1984).

Inapplying a nonlineartheory
(chaos)inthe analysis of weather
and climate data, one usually
begins with estimating the di-
mension of the underlying
attractor (e.g., Nicolisand Nicolis
1984; Fraedrich 1986; Essex et
al. 1987; Tsonis and Elsner 1988;

the signal composed of a sine wave plus noise, we Sharifi et al. 1990) by reconstructing a state space
make predictions on the second half and, aswasdone  from the time series and then applying some variant of
with the Lorenz system, we compute the correlation the correlation algorithm (Grassberger and Procaccia
coefficient between actual and predicted values asa 1983) on the set of points. The dimension, which is
function of prediction time. The dashed horizontal line  given by the power-law (scaling) behavior of the

in Fig. 10 is the result of this

procedure. The independence Proxy SST data

of predictive skill with prediction y '
length is in sharp contrast to the

rapid decrease of predictive skill 0.8
for the chaotic signal from the
Lorenz system (solid line). From
the differences, we suggest that
predicting time series using neu-
ral networks is another method
for differentiating additive noise
from deterministic chaos (Elsner
1991). Predictions on time se-
ries with additive noise will ap-
pear to have a fixed amount of 0.0

0.6

0.4 r

0.2 ¢

Correlation Coefficient

T T

error, regardless of how far into
the future one tries to predict. On

-0.2

the other hand, prediction accu-

racy on chaotic time series will 0 1 2 4 S 6
degrade as one tries to predict
too far into the future. It is sug- Time (2 kyr increments)

gested that it might be possible
to quantitatively compare the

Fia. 9. Correlation coefficient as a function of prediction time for the data in Fig. 8. The solid
and dashed lines represent predictions made with the neural network and with an optimum

rates of degradation in predic-  autoregressive model, respectively. Both models start well, but the autoregressive model

tion skill as an indication of just  cannot compete with the network as time increases.
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Chaos vs Noise

7. Conclusion

7 T T

0.8

Correlation Coefficient

B A e A -4

We have tried to demonstrate
with examples ranging from
mathematical models to con-
trolled laboratory experiments to
measured climate data that neu-
ral networks are capable of short-
term predictions even if the un-
derlying dynamics generating the
data are chaotic. What Smo-
lensky (1988) says about the
human mind can be applied

0.0

equally well to the atmosphere.
That is, the rich behavior dis-
A played by the atmosphere has

Time Steps

Fia. 10. Correlation coefficients between actual and neural-network predicted values for the
Lorenz system (solid line) and for a signal consisting of a sine wave plus noise (dashed line).
The rapid drop of the correlation coefficient with prediction time is a characteristic of chaotic
signals. In contrast, the independence of predictive skill with prediction time of the sine wave-
plus-noise signal demonstrates that the neural network is capable of distinguishing between

additive noise and chaos.

correlation integral, gives a measure of the effective
number of degrees of freedom of the system. Applica-
tion of the algorithm, however, is subjected to prob-
lems like proper length of time series, proper 7, etc.
Also, because the scaling regions used to estimate the
dimension involve only a small number of distances
between points in the state space, much of the infor-
mation in the time series is lost, which for relatively
short weather and climate records can cause serious
problems (Sugihara and May 1990). In contrast, pre-
diction methods like the one discussed here have the
advantage that standard statistical procedures (such
as correlation coefficients between actual and pre-
dicted values) can be used to evaluate their perfor-
mance. And their performance should provide a more
stringent test of underlying determinism in complex
systems (Farmer and Sidorowich 1988; Casdagli 1989).
Note that the underlying dimension could be useful
information to the neural networks as well. An estimate
may be obtained by the standard approaches men-
tioned above, orit may simply be guessed. Inthe case
of neural networks, this estimate does not constitute a
proof of chaos, but serves only as a guide in the
training of the network. Itis the improved predictions (if
any) that provide proofs of underlying deterministic
dynamics.

Bulletin American Meteorological Society

the paradoxical character of ap-
pearing, on the one hand, tightly
governed by a complex system
of hard rules, and, on the other,
awash with variance, deviation,
exception, and a degree of flex-
ibility that has eluded to some
extent our attempts at simula-
tion. Neural network models may
be capable of demonstrating a
greater degree of precision and
accuracy in predicting and ex-
plaining some of the many vagaries of the atmosphere
than do currently available models.
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