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ABSTRACT

Empirical studies have led to improvements in evaluating and quantifying the tornado threat. However,

morework is needed to put the research onto a solid statistical foundation. Here the authors begin to build this

foundation by introducing and then demonstrating a statistical model to estimate damage rating (enhanced

Fujita scale) probabilities. A goal is to alert researchers to available statistical technology for improving

severe weather warnings. The model is cumulative logistic regression and the parameters are determined

using Bayesian inference. The model is demonstrated by estimating damage rating probabilities from values

of known environmental factors on days withmany tornadoes in theUnited States. Controlling for distance to

nearest town/city, which serves as a proxy variable for damage target density, the model quantifies the chance

that a particular tornado will be assigned any damage rating given specific environmental conditions. Under

otherwise average conditions, themodel estimates a 65%chance that a tornado occurring in a city or townwill

be rated EF0 when bulk shear (1000–500-hPa layer) is weak (10m s21). This probability drops to 38% when

the bulk shear is strong (40m s21). Themodel quantifies the corresponding increases in the chance of the same

tornado receiving higher damage ratings. Quantifying changes to the probability distribution on the ordered

damage rating categories is a natural application of cumulative logistic regression.

1. Introduction

Advances in evaluating and quantifying the tornado

threat have recently been made. These advances come

from a better understanding of relationships between

near-storm regional-scale environmental conditions and

the resulting mode of convection [see Smith et al. (2012)

and Thompson et al. (2012) for a review of the literature

on this topic], and from careful statistical analysis of

relationships between radar-based rotational signals

at the storm scale and the probability of specific damage

rating categories (Smith et al. 2015; Thompson et al.

2017). Cohen et al. (2018) investigated multivariate

models as a way to combine environmental and storm-

scale factors influencing enhanced Fujita scale (EF)

rating probabilities. While these approaches improve

the statistical foundation of tornado threat research,

there is room for additional improvement. The purpose

of the present study is to introduce a statistical model to

estimate a per-tornado damage rating (and associated

uncertainties) directly and to demonstrate features of

the model by using it to estimate damage ratings with

environmental factors on days with many tornadoes.

The aim differs from earlier studies in that the sole

focus is on method, as opposed to operational appli-

cation. The goal here is to make researchers aware of

modern statistical technology that can be leveraged to

help them to improve prediction of severe weather. The

objective here is to demonstrate the cumulative logistic

model for estimating damage rating probabilities.

From a mathematics perspective, the approach that

we take is similar to that outlined by Cohen et al. (2018),

who fit a linear regression to wind speeds corresponding

to midpoints of EF rating intervals and used a logis-

tic regression model to analyze the probability of a

tornado occurrence. Our approach differs in that we fit a

cumulative logistic regression model to the EF rating

distribution directly. From a statistics standpoint, the

approach we take is similar to the approach used by

Thompson et al. (2017), who estimated conditional

empirical probabilities of EF ratings by binning var-

ious indicators from WSR-88D. Our approach differs

in that we use a multivariate model and we include

estimates of uncertainty on the predicted output. In

short, our approach is unique in that we use damage

ratings directly as ordered categorical outcomes and

we provide estimates of uncertainty on the estimated

probabilities.Corresponding author: James B. Elsner, jelsner@fsu.edu
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While our focus in this paper is solely methodological,

the application might have some operational relevance.

This is because environmental ingredients needed to

produce an outbreak of severe convective weather are

well known and can be leveraged to make predictions.

Considerable skill exists in outlining areas under greatest

risk of severe weather on a given day Hitchens and

Brooks (2014). Outbreaks have large variation in terms

of tornado frequency and intensity with much of this

variability resulting from the convective mode (Smith

et al. 2012; Thompson et al. 2012; Smith et al. 2015).

Given a forecast of a severe weather outbreak will

conditions favor many violent tornadoes? Dynamical

convective-allowing models provide forecast guidance

through products like updraft helicity swaths, and

such models can anticipate the convective mode to

some degree. But statistical models trained on thousands

of tornadoes occurring across dozens of outbreaks

can provide a baseline climatology for this risk. The

U.S. Storm Prediction Center (SPC) currently uses long-

run frequency of two or more tornadoes and long-run

frequency of at least one strong (EF2–EF5) tornado

as climatology.

Our paper is similar to a recent study in the above

sense in that it employs a model to estimate the proba-

bility of at least one significant (EF21) tornado on days

with at least one tornado-warned supercell (Togstad

et al. 2011). It differs in two key ways, however. First, in

demonstrating the approach, we condition our model

on the occurrence of a tornado ‘‘outbreak’’ (at least 10

tornadoes) rather than on the occurrence of a tornado

warning. Second, we use cumulative frequency distri-

bution by EF rating as the outcome variable rather than

relative frequency of at least one EF2 1 tornado. The

paper is outlined as follows. The mathematics of cu-

mulative logistic regression are given in section 2. The

data used to demonstrate the model are described in

section 3. Model results are presented in section 4, and a

summary is given in section 5.

2. Cumulative logistic regression

The objective of this paper is to introduce cumulative

logistic regression model as a way to estimate damage

rating probabilities directly and to demonstrate its

features by using it to estimate damage rating probabili-

ties from large-scale environmental variables. We begin

with a description of the model in the context of esti-

mating damage ratings from environmental variables.

Let Pr(Ti # k) be the probability that tornado Ti has

a maximum EF rating that is less than or equal to k,

where k 5 0, . . . , 5. Then the log-cumulative odds (cu-

mulative logit) are defined as

a
k
5 log

Pr(T
i
# k)

12Pr(T
i
#k)

, (1)

where ak (‘‘intercept’’ parameter) has a unique value

for each EF rating. Note that the cumulative logit

for the highest EF rating (EF5) is infinity because log

[1/(1 2 1)] 5 ‘ in the limit. So for K 5 6 possible EF

ratings, we have K 2 1 5 5 intercepts that need to be

determined.

A rating EFi is assigned to tornadoTi using an ordered

distribution, which is a categorical distribution that

takes a vector of probabilities (p5 {p0, p1, p2, p3, p4}),

one for each EF rating below EF5. Each probability

value pk in the vector is defined by its link to the inter-

cept parameter value ak. To include a predictor variable

in the model we define the log-cumulative odds as the

sum of ak and a linear model term (bjxij), where xij
is the value of a population-level or a group-level

variable j (e.g., distance to nearest city/town for a

population-level variable and month for a group-level

variable) associated with tornado Ti and bj is the coef-

ficient (or coefficient vector for group-level variables)

associated with that variable. We determine the aks and

bjs using Bayesian inference, so themodel includes prior

distributions on these parameters. We put a flat normal

distribution prior on the aks and a flat Student’s t dis-

tribution prior on the bjs.

Following the notation of McElreath (2015), we write

the model as
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The model gives the correct ordering of the EF

ratings while allowing for changes in the likelihood

for each tornado based on associated environmental

conditions and other factors. The negative sign en-

sures that as the log-cumulative odds of every EF rating

below the highest decreases, the probability mass shifts

upward toward higher EF ratings (McElreath 2015).

3. Data

We illustrate the utility of cumulative logistic regres-

sion for estimating EF rating categories by fitting the

model to a set of data. The data consist of the outcome

variable [highest (maximum) per-tornado EF rating],

predictor variables (environmental factors and distance

to nearest city/town), and grouping variables (month

and cluster number). Data are filtered to include only
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tornadoes occurring on days with at least 10 tornadoes

over the period 1994–2017 within the contiguous United

States. Ten is a compromise between having too few

cases leading to large uncertainty on the statistical

model estimates and too many leading to slow conver-

gence to the posterior distribution. Here we describe

the procedure that we used to organize the data and

provide summary statistics.

First we extract the date, time, genesis location, and

maximum EF rating from the tornado record obtained

from the SPC. Each row in the record contains infor-

mation about an individual tornado. The start year of

1994 marks the beginning of extensive use ofWSR-88D.

There are 29 372 tornadoes over this period of record.

We convert the geographic coordinates of the genesis

locations to a Lambert conformal conic projection

centered on 1078 W longitude.

Next we assign a cluster number to each tornado

based on space–time differences between genesis lo-

cations. If two tornadoes occur close together in space

and time (e.g., 1 km and 1h), they are assigned the same

cluster number (see Fig. 1 for an example of a tornado

cluster). Clustering stops when the difference between

individual tornadoes and an existing cluster exceeds

50 000 s (;14h). The differences have units of time be-

cause we divide the spatial distance by 15m s21. Details

of the procedure along with a comparison with a sub-

jective grouping are provided in Schroder and Elsner

(2019). Last, we filter the tornadoes to include only those

occurring as part of clusters with at least 10 tornadoes

within a single convective day (from 1200 to 1200 UTC).

This filtering results in 16 501 tornadoes in 742 clus-

ters, with the majority of the clusters occurring during

April, May, and June (Fig. 2).

Next we extract environmental variables from the

National Centers for Environmental Prediction North

AmericanRegional Reanalysis (NARR), obtained from

the National Center for Atmospheric Research. Vari-

ables are available on a 32.4-km grid and are a blend

of modeled and observed data. We use the files that

contain environmental data for each day, ranging from

1200 UTC to 1200 UTC in 3-h increments. Variables

considered include the CAPE and CIN from 180 to

0 hPa above ground level (AGL) (layer 375, 376), the

storm-relative helicity from 0 to 3000m AGL (layer

323), and the u and y components of storm motion

from 0 to 6000m AGL (layer 324, 325). In addition,

we compute total storm motion as the square root of

the sum of the velocity components squared and bulk

shear as the square root of the sum of the squared dif-

ferences between the u and y winds for the 1000- and

500-hPa levels. We consider these variables because they

are well known to be associated with tornado activity

(Gensini and Ashley 2011; Cheng et al. 2016). For each

tornado cluster, we find the closest 3-h time before the

appearance of the first tornado in the cluster and use

the environmental variables from that time. We pick a

time before the event starts to have a sample of con-

ditions prior to the appearance of any tornado. We

join the environmental variables at the cluster level

with the data at the tornado level.

For each tornado, we compute the distance between

the genesis location and the nearest city/town (Elsner

et al. 2013; Widen et al. 2013). The city/town location

is based on the geographic center. Population values

FIG. 1. Tornado locations (origin) during one tornado cluster used

in this study.

FIG. 2. Monthly frequency of tornado clusters (convective days

with at least 10 tornadoes), 1994–2017. The origin of the circle is 0,

and the outermost ring corresponds to 200 tornadoes.
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are based on the 2010 U.S. Census data [obtained from

Steiner (2019) and accessed through the ‘‘USA-

boundaries’’ package (Mullen and Bratt 2018) in the

R software package] and range from a few hundred

people to more the eight million people. The distance

between a tornado and the nearest city/town serves

as a proxy for the potential number of damage targets.

All else being equal, a tornado occurring within a city

or town will have a greater opportunity to impact a

damage target, on average, than one that occurs in a

rural area. With the distance to nearest city/town as

predictor variable, we are able to quantify how the po-

tential number of damage targets shifts the distributions,

for example, fromEF0 to EF1 and fromEF1 to EF2.We

know that the chance of getting an EF41 tornado in the

dataset increases with the number of targets, but we do

not know by how much relative to an EF3. Table 1 lists

the predictor variables along with the associated ex-

tremes and average values. Averages are computed over

all tornadoes. We remove tornadoes occurring during

the 30 May 2003 cluster since the maximum helicity

value for this cluster had an erroneously high value as

determined by examining the coefficient on this term

when the cluster was included in the model.

4. Results

We begin with a histogram of maximum EF rating

per tornado (highest rating given to the tornado as

recorded in the SPC data). As expected, the histogram

(Fig. 3) shows that the vast majority of tornadoes that

occur as part of a big cluster (101 tornadoes) are rated

EF0 or EF1, with far fewer rated EF4 or EF5. Relative

to all tornadoes, however, the distribution of tornadoes

in big clusters favors higher ratings. For example, 3.5%

of tornadoes occurring in big clusters are rated EF3

as compared with 2.3% of all tornadoes; 0.08% of

tornadoes occurring in big clusters are rated EF5 as

compared with 0.05% of all tornadoes.

Next, we describe this histogram on the log-cumulative-

odds scale by constructing the odds of a cumulative

probability and then taking logarithms. The logit func-

tion is the logarithm of the odds (log odds), so the

cumulative logit is the logarithm of the cumulative odds.

Both the logit and the cumulative logit constrain the

probabilities to lie in the interval between 0 and 1.

Predictor variables are added on the cumulative logit

scale [Eq. (2)]. The link function takes care of convert-

ing the parameter estimates on these variables to the

proper probability scale (McElreath 2015). We compute

the cumulative probabilities from the histogram, which

are the discrete proportions of tornadoes by each EF

rating. We then compute the series of intercept pa-

rameters to redescribe the histogram in terms of log-

cumulative odds [Eq. (1)]. Each intercept is on the

log-cumulative-odds scale and stands in for the cumu-

lative probability associated with each EF rating (Fig. 4).

The discrete probability for each EF rating Pr(Ti 5 k)

is the successive difference between the elements of

the vector of cumulative probabilities. These proba-

bilities are the likelihoods that are conditioned on the

values of the predictor variables and combined with the

priors to complete the model [Eq. (2)].

Posterior distributions on the model parameters are

obtained using the Stan computational engine (Carpenter

et al. 2017) accessed through the ‘‘brms’’ package

(Bürkner 2017). Mildly informative conservative priors

are specified to improve convergence of the sampler and

to guard against overfitting. To improve the efficiency

of the sampler, predictor variables are scaled by sub-

tracting their respective means and dividing by their

TABLE 1. Variables used in the model to estimate damage ratings. The values are based on 16 483 tornadoes in 741 clusters.

Variable name Abbreviation Min Max Avg

Year YR 1994 2017 2006

Nearest distance to city/town (km) D 0.019 137 19.2

Convective available potential energy (J kg21) CAPE 0 6530 2134

Helicity (m2 s22) HLCY 23 1027 350

Bulk shear (m s21) BS 5.7 45.5 28.5

Convective inhibition (J kg21) CIN 2651 0 2176

FIG. 3. Histogram of tornadoes by maximum EF rating. Only

tornadoes occurring in big clusters are considered (see text).
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respective standard deviations. The environmental

variables and year are included as population-level

effects (fixed effects). The month of the cluster and the

unique cluster identification number are included as

group-level effects (random effects).

The model reproduces the distribution of tornadoes

by EF rating category as expected (Table 2). It slightly

underestimates the proportion of EF0 tornadoes and

slightly overestimates the number of EF1 tornadoes and

EF3 tornadoes, but overall the proportions from the

model match the data very well. Signs on the fixed-

effect coefficients (Table 3) are consistent with expec-

tations based on physical reasoning derived from the

current understanding of how environmental factors

influence tornado activity (Smith et al. 2012; Thompson

et al. 2017). The coefficient on cluster year is positive

indicating a trend toward higher rated tornadoes as

discussed in Elsner et al. (2019). The coefficient on the

distance-to-nearest-city/town term is negative as ex-

pected. The closer a tornado occurs to a city/town, the

greater the chance it will get rated at the next higher

EF rating relative to the same tornado occurring in

a rural area. The largest effect occurs with bulk shear.

The sign on the coefficient indicates that greater shear

results in a better chance of a higher EF rating, as we

would expect from physical reasoning.

Coefficients on the fixed effects and on the month

random effect are plotted in Fig. 5. Magnitude of the

departure from zero indicates the importance of the

variable to the model for estimating damage ratings as

discussed above. The monthly variation in the distribution

of tornadoes by EF rating is an important model compo-

nent, with May and June having a significantly lower

FIG. 4. (a) Cumulative proportion and (b) log-cumulative odds of a tornado by maximum EF rating for all

tornadoes (gray) and for tornadoes occurring in big clusters (black). Note that the cumulative logit for the EF5

rating is infinity.

TABLE 2. Observed and estimated proportions of tornadoes by

EF damage rating. The estimated proportions are from a cumula-

tive logistic regression model.

Damage rating Observed Estimated

EF0 0.5325 0.5220

EF1 0.3183 0.3489

EF2 0.1057 0.0945

EF3 0.0348 0.0279

EF4 0.0079 0.0061

EF5 0.0008 0.0006

TABLE 3. Estimated coefficients on the population-level effects.

Abbreviations in the subscripts refer to the variables listed in Table 1;

UI is the uncertainty/confidence interval.

Coef Estimate Error 95% UI

bYR 0.10 0.03 (0.03, 0.16)

bD 20.13 0.02 (20.17, 20.09)

bCAPE 0.10 0.04 (0.02, 0.18)

bHLCY 0.12 0.05 (0.03, 0.21)

bBS 0.28 0.04 (0.20, 0.38)
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proportion of most damaging tornadoes after accounting

for the fixed effects. January and November have a larger

than average proportion of most damaging tornadoes.

To get an idea how much a particular variable statis-

tically influences the distribution of EF ratings while

holding the other variables constant, we examine

marginal effects (Fig. 6). A variable’s marginal effect

is computed by holding the other variables at their

respective mean values. Consider the marginal effect

of bulk shear. For tornadoes occurring in environ-

ments of low shear (less than 10m s21) the model

estimates the probability that a tornado gets rated

EF0 at nearly 75%. This probability drops to 40% for

tornadoes occurring in environments of high shear

(greater than 40m s21). There are compensating in-

creases in the chance of EF1 and higher ratings across

the range of bulk shear values. Further, we see that

CAPE and helicity have less of an effect on the proba-

bility distribution of EF ratings compared with bulk

shear (posterior means on the respective coefficients

are farther from the zero line). We also quantify the

trend toward higher EF ratings and the relative changes

over time depending on where the tornado occurs

(near a city/town or outside a city/town; Fig. 7).

An important point is that we can use the model to get

an estimate of the probability distributions for any

particular set of predictor values. Since the model uses

Bayesian inference, we get posterior predictive samples

of the EF probability distribution for any set of values.

As an example, we show the posterior predictive samples

across a range of bulk shear values setting the variables

to their respective averages except distance-to-nearest-

city/town, which we set to zero (Fig. 8). Bulk shear is

illustrated because it has the largest influence on the

outcome (distribution of EF ratings) as noted above. In-

dividual samples (100 of them) of the cumulative pro-

portion of tornadoes for different EF ratings are shown.

When bulk shear is 10ms21 the posterior mean rela-

tive percentage of an EF0 tornado is 65% [interquartile

range (IQR) 5 (56%, 79%)], but when bulk shear is

40m s21 the posterior mean relative percentage of an

EF0 tornado drops to 38% [IQR 5 (25%, 50%)]. This

decrease in percent is compensated by increases in the

relative percentage of tornadoes rated higher. For ex-

ample, when bulk shear is 10m s21 the posterior mean

relative percentage of an EF3 tornado is 2.0% [IQR 5
(0.9%, 2.5%)] but when bulk shear is 40m s21 the pos-

terior mean relative percentage of an EF3 tornado rises

to 6.1% [IQR 5 (2.9%, 8.2%)]. This quantification of

the effect of bulk shear on EF ratings is possible with a

cumulative logistic regression model.

We can use the model in a similar way to quantify a

well-known (but not well quantified) EF rating bias.

We find that, under average environmental condition

(see Table 1), when a tornado occurs near the center of a

city or town, it will get rated EF0 47% [IQR 5 (31%,

59%)] of the time. This compares with 56% [IQR 5
(41%, 70%)] of the time when the same tornado occurs

50 km from the center. This increase in the percentage

of EF0 tornadoes going from city to rural areas is com-

pensated by corresponding decreases in percentages of

tornadoes getting rated higher. For example, the chance

FIG. 5. Posteriormedian (circles) and highest posterior probability intervals [66% (thick lines) and 95% (thin lines)]

for (a) the fixed effects and (b) the random effect of month.
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that a tornado gets rated as EF3 or higher is 5% in the

city compared with 3.6% at a distance of 50 km from

the city/town and only 2.4% at a distance of 100 km

from the city/town. This quantification of an EF rating

bias is possible with a cumulative logistic model. By

including an interaction between year and distance to

nearest city/town in the model we determine that this

bias is not diminishing over time. This differs from the

decreasing population bias on the tornado reports as

documented and quantified elsewhere (Elsner et al.

2013; Jagger et al. 2015).

5. Summary

We introduced the cumulative logistic regression

model to estimate damage rating probabilities directly

and we demonstrated features of the model by using it

to estimate probabilities from environmental variables

for tornadoes occurring in large clusters (10 or more

tornadoes). Model parameters were determined by

Bayesian inference using the method of Hamiltonian

Monte Carlo with the Stan programming language. Stan

code was generated from R through the brms package

(Bürkner 2017). The flexibility of this approach makes

it straightforward to adjust the model to estimate

other outbreak characteristics (e.g., overall number of

tornadoes) and to include domain-specific knowledge.

Results show that the chance of higher damage ratings

can be explained statistically by increasing values of

bulk shear, CAPE, and helicity, and by decreasing

values of distance to nearest city/town.

Coefficients on the environmental variables are con-

sistent with expectations based on physical reasoning

derived from the current understanding of how en-

vironmental factors influence tornado activity. There

is a trend toward higher rated tornadoes with time as

inferred in Elsner et al. (2019). The closer a tornado

occurs to a city/town, the greater the chance it will get

rated at the next higher EF rating. Taken together

these two findings could be related to urban sprawl

(Strader et al. 2017). Bulk shear has the strongest

relationship to damage rating proportions. Under

otherwise average conditions, the model estimates a

65% [IQR 5 (53%, 78%)] chance that any tornado

occurring near a city or town will be rated EF0 when

the bulk shear is weak (10ms21). This probability drops

to 38% [IQR 5 (25%, 50%)] when the bulk shear is

strong (40m s21) but with compensating increases in

FIG. 6. Marginal effects of the environmental variables on the distribution of EF rating for (a) bulk shear,

(b) CAPE, (c) distance to nearest city/town, and (d) storm-relative helicity.
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the chance of higher ratings. This quantification is only

possible with a cumulative logistic regression.

This study makes the case that cumulative logistic

regression is the right tool for quantifying the combined

role environmental factors play on the distribution of

tornadoes by EF rating. It might be tempting to fit a

simpler model to these data as was done in Cohen

et al. (2018), who suggested that simulated tornado

FIG. 7. Marginal trends in the distribution of EF rating (EF0, EF1, and EF2). Trends are estimated by setting the

distance to 135 km for remote areas and 0 km for inside a city or town.

FIG. 8. Posterior predictions over a range of bulk shear values: (a) cumulative proportion by EF rating for 100

random samples, and (b) probability of EF-level damage by EF rating. The white line indicates the posterior

average, and the band indicates the interquartile range over the samples. Values for other variables are set to their

respective averages except for distance-to-nearest-city/town, the value of which is set to zero.
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wind speeds from their model can be scaled within the

context of the damage ratings, but it is unclear how

this can be done while preserving the relative fre-

quency of ratings, given that the model residuals are

assumed to be described by a normal distribution

centered about the conditional mean wind speed.

Cumulative logistic regression makes no such as-

sumption and estimates probabilities on the damage

ratings directly.

Although the results from applying the model for

demonstration purposes are consistent with past research

on this topic, there are limitations to the inferences that

can be made with them. In particular, our exclusive focus

on days with at least 10 tornadoes is a type of selection

bias meaning that the sample of data used to fit themodel

does not represent the population of all tornadoes, which

limits what we can say in general about the effect of

convective environments on the probability of a partic-

ular EF rating. Further, no attempt was made to assess

model skill in the context of its potential value in actual

forecast situations. At a minimum a cross-validation

exercise (see Elsner and Schmertmann 1994) would

be needed. The demonstrated model could be made

operationally useful if additional variables related to

convective type and radar signatures are included.
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