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ABSTRACT

The strongest hurricanes over the North Atlantic Ocean are getting stronger, with the increase related to

rising ocean temperature. Here, the authors develop a procedure for estimating future wind losses from

hurricanes and apply it to Eglin Air Force Base along the northern coast of Florida. The method combines

models of the statistical distributions for extreme wind speed and average sea surface temperature over the

Gulf of Mexico with dynamical models for tropical cyclone wind fields and damage losses. Results show that

the 1-in-100-yr hurricane from the twentieth century picked at random to occur in the year 2100 would result

in wind damage that is 36% [(13%, 76%) 5 90% confidence interval] greater solely as a consequence of the

projected warmer waters in the Gulf of Mexico. The method can be applied elsewhere along the coast with

modeling assumptions modified for regional conditions.

1. Introduction

Hurricanes and tropical storms pose a serious natural

threat to coastal military infrastructure. High wind, storm

surge, and rainfall flooding can cause significant damage.

Since 2005, the United States has experienced devastat-

ing impacts from strong hurricanes, including Katrina,

Rita, Wilma, and Ike. Research indicates that as ocean

temperatures have risen the strongest hurricanes have

gotten stronger (Elsner et al. 2008b). These increases are

likely to continue with rising global temperatures (Knutson

et al. 2010; Bender et al. 2010).

Hurricane hazard models are valuable for estimating

contemporary wind-damage losses to buildings and in-

frastructure, and they are widely used for insurance rate

adjustments in government and private industry. At pres-

ent, the models do not incorporate the potential effects of

climate variability and climate change, however. Here, we

propose a method that makes use of components of a haz-

ard model in conjunction with statistical models of tropical

cyclone trends to estimate future wind-damage losses. We

develop the method for the Eglin Air Force Base (EAFB),

which is located in the Florida Panhandle, but it is general

enough that it can be applied to other coastal locations.

EAFB is used by the U.S. military as a development

and testing ground for air-delivered weaponry. The mili-

tary has invested millions of dollars in infrastructure on

the base, ranging from roads and air fields to personnel

housing and radar installations. Given its proximity to the

Gulf of Mexico, much of this built environment is exposed

to hurricane winds. In particular, military planners are

concerned with the potential increasing risk of wind-

damage and surge losses under future climate scenarios.

We first investigate the contemporary hurricane wind

risk to EAFB by using a wind-field model on historical

hurricanes that have affected the region and by statis-

tically modeling the resulting local wind speeds. We then

attempt to estimate the future wind risk by considering

an adjustment to the intensity of the strongest hurri-

canes. The adjustment is based on the nonlinear statis-

tical relationship between hurricane intensity and sea

surface temperature (SST) and a linear trend in SST.

Our analysis shows that, if future projections of hurri-

cane intensity are realized, coastal losses on the 1-in-

100-yr (1 in 500 yr) storm will increase by 36% (52%)

relative to today’s losses, making EAFB more vulnera-

ble to future losses from the strongest hurricanes. The

greater vulnerability arises from increases in the intensity

of the strongest hurricanes.

We begin in section 2 with a summary of the hurricanes

that have affected EAFB. We describe the available da-

tasets and the procedure for identifying hurricanes from
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the past for this analysis. The frequency, track, and inten-

sity of the historical hurricanes are displayed. In section 3,

we examine the procedures for estimating contemporary

wind losses with the use of the multihazard version of the

‘‘HAZUS’’ hurricane hazard model (HAZUS-MH, here-

inafter referred to as HAZUS) and a postprocessing of

the output using extreme-value statistics. In section 4, we

model the recent changes in hurricane intensity for storms

over the Gulf of Mexico. In section 5, we model the rising

trend in SST, and in section 6, we combine the two models

to project tropical cyclone intensities to 2100. In section 7,

we use our modeled estimates of future hurricane inten-

sities to compare the projected relative increase in wind-

damage losses 90 yr from now. We provide a summary and

list model limitations in section 8.

2. Past hurricanes that have affected EAFB

a. Data

We begin by considering the historical record of hur-

ricanes having a wind impact on EAFB. The data come

from the National Hurricane Center’s Hurricane Data-

base (HURDAT, or best track; Landsea et al. 2004). This

is the official record of tropical cyclones for the Atlantic

Ocean, Gulf of Mexico, and Caribbean Sea, including

those that have made landfall in the United States. The

record consists of the 6-hourly cyclone location and in-

tensity for individual storms back to 1851 and was origi-

nally assembled in the 1960s to support the objectives

of the National Aeronautics and Space Administration

Apollo spaceflight program because launches were con-

ducted along Florida’s hurricane-vulnerable east coast.

The precision of the data that make up HURDAT has

increased as analysis techniques and understanding of

hurricanes have improved over time.

The data are widely used in research on hurricanes,

including studies on the seasonal predictability of hur-

ricanes across the Atlantic (Klotzbach 2008) and along

the U.S. coastline (Elsner and Jagger 2004) and studies

on climate variability and climate change (Kossin and

Camargo 2009; Elsner et al. 2008a). Yet, the data con-

tain random errors and systematic biases introduced by

the improved accuracy of records over time. Identifica-

tion and removal of these errors as well as ways to treat

the systematic biases are on going (Landsea et al. 2004;

Vecchi and Knutson 2008; Solow 2010; Landsea et al.

2010). Although the quantitative loss results presented

in this paper will certainly be affected by future im-

provements to the dataset, our purpose here is to dem-

onstrate a method for estimating future losses. Although

we show that hurricane data biases over the twentieth

century do not significantly affect our trend results,

success at demonstrating the method should be judged

separately from opinions about how data inhomoge-

neities and random errors might modify the conclusions.

Moreover, it should be kept in mind that the data are the

most consistent source of information on past hurricanes

that is available and that our analysis focuses on hurri-

canes near the Gulf coast, where storm records are more

reliable than those over the open ocean.

b. Procedure for selecting hurricanes

For use in this study, the best-track tropical cyclone

data were interpolated hourly for the geographic posi-

tion of the center fix and wind speed using a polynomial

(of degree 3) smoother that was described in Jagger and

Elsner (2006). The spline smoothing uses three points to

the left and two to the right along with the current value

to preserve the 6-hourly wind speed and to provide an

interpolation of values at each hour between those

values. The spline fit is performed using the method of

least squares.

All tropical cyclones passing within 140 km (great

circle distance) of the point 30.48N, 86.88W over the

period 1851–2009 that had wind speeds exceeding the

hurricane threshold (33 m s21) within this distance are

considered for this study. The point is located on Santa

Rosa Island, approximately 30 km southwest of the

geographic center of EAFB. A hurricane making land-

fall here places much of the EAFB in the most de-

structive (right) side (relative to the direction of motion)

of the storm (Scheitlin et al. 2011). The 140-km radius is

one-half of the typical width of the swath of hurricane-

force winds for hurricanes that exceed 50 m s21 as deter-

mined on the basis of a hurricane-strike model developed

by Keim et al. (2007).

Note that our interest is in wind damage. Large (and

even some medium sized) hurricanes outside our search

radius could produce a damaging surge at coastal loca-

tions on EAFB but are not considered here. For instance

Hurricane Katrina (2005), in making landfall on the

Louisiana–Mississippi border more than 250 km to the

west of our fiducial point, produced a surge on portions

of Santa Rosa Island that exceeded 1.5 m, but Katrina’s

winds are not included in our analysis and modeling

because they did not exceed tropical-storm force in this

region (Barnett 2006).

The search that was based on the above criteria

returned 39 hurricanes that occurred over the period

1851–2009. This amounts to an overall mean of 0.24

hurricanes per year or about 1 hurricane every 4 yr. The

frequencies, tracks, and intensities of the EAFB hurri-

canes are shown in Fig. 1. The longest period without

a hurricane lasted 18 yr, from 1957 through 1974. The

annual variance is 0.24 (hurricanes per year)22, which is
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consistent with the annual counts being a Poisson pro-

cess in which the mean and the variance are the same.

Assuming a Poisson rate equal to the overall mean, the

chance of no hurricanes affecting the base over an 18-yr

stretch is 1.3%. There are four years with a two-hurricane

impact, with the most recent occurring in 1995. There is

no significant upward or downward trend in the fre-

quency of hurricanes affecting EAFB. This is consistent

with modeling studies that show global frequency either

decreasing or remaining essentially unchanged as a result

of ‘‘greenhouse’’ warming (Knutson et al. 2010).

The landfall point is the closest hourly-interpolated

location to land. The entire set of track locations and

wind speeds is truncated to include only locations 24 h

before and 12 h after landfall, for a total of 37 h (including

the landfall point) for each track. The hurricane of 1870

is removed from further analysis (although it counts in

the frequency statistic) because it contains only a single

track point. Hurricanes tend to approach EAFB from

the southwest, south, and southeast with equal regular-

ity, and it is just as likely for a hurricane to pass to the

east of EAFB as to the west.

The hurricane intensities along the track segment

before and after landfall are shown in Fig. 1. The gray

shading indicates time periods, with the darkest gray

indicating the hurricanes since 2000. In general, the

historical hurricanes intensify as they approach the coast

and then begin to decay 6–9 h prior to landfall. The

weakening of winds prior to landfall is likely related to

the hurricane ingesting dry, aerosol-laden air from the

FIG. 1. Hurricanes that have affected EAFB. (a) Occurrences of the 39 tropical cyclones that have come within

140 km of Santa Rosa Island (30.48N, 86.88W) with winds of at least hurricane speed (33 m s21). (b) Track positions

24 h before and 12 h after landfall for all of the hurricanes. (c) The maximum wind speeds (m s21) of each of the

tropical cyclones relative to landfall. The landfall time is shown with a vertical line. The gray shading in the wind

speed intensity profiles indicates time periods, with the darkest gray indicating the most recent hurricanes (after the

year 2000).
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continent (Khain et al. 2010) as well as to hurricane-

induced cooling of the sea surface (Rappaport et al.

2010). The strongest hurricanes tend to decay faster

once over land, and there is an upward trend in the in-

tensity of hurricanes approaching EAFB (Malmstadt

et al. 2009).

c. Hurricane characteristics along the track

The set of historical hurricanes provides a sample of

storms from which wind-damage losses will be estimated

using the HAZUS hurricane model (Vickery et al.

2009a). Additional information beyond the hurricane

track and maximum wind speeds is necessary as input to

the hurricane model. This information includes forward

speed, radius to maximum winds, the Holland B pa-

rameter, minimum central pressure, and a binary vari-

able indicating whether the storm is over land or water.

The total damage from a hurricane at a given location

also depends on how long the wind blows, which is a

function of the hurricane’s forward speed and size. A

hurricane moving slower over an area will cause more

damage than a hurricane moving faster, all else being

equal. According to Scheitlin et al. (2011), hurricanes

approaching EAFB move at speeds of 6–7 m s21 on

average, with a slight acceleration prior to landfall. Af-

ter landfall, there is a significant increase in forward

velocity as the hurricanes get pushed northward and east-

ward under the influence of the midlatitude jet streams.

Here, the forward speed in units of knots is computed

from the change in location of the center fixes at hourly

intervals.

Hurricane wind speeds increase from near zero inside

the eye to a maximum in the eyewall and then decrease

outward. The average distance from the storm center to

the circle of maximum wind speed is called the radius to

maximum winds RMW and is adopted as a convenient

parameter to be used as the size or lateral extent of the

hurricane. The RMW determines the spatial extent of the

hurricane force winds and determines, along with for-

ward speed, how long a given location experiences these

forces. We use the landfall RMW values from the HURDAT

metadata for all locations along the track for hurricanes

after 1900, with the exception of the storm in 1915 and

Hurricane Barry in 2001. For the balance of hurricanes,

we use the average RMW 5 40 km that is computed

from hurricanes with size information. All RMW values

are held constant along the track segment.

The decrease of wind speeds outside the RMW is de-

scribed by the Holland B parameter (Holland 1980).

The Holland B parameter is a nondimensional value

ranging between 1 and 2.5 that expresses the weakening

of wind speeds (decay rate) as a function of distance

from RMW. A lower Holland B value indicates a slower

decay rate, indicating a larger region of high wind winds.

For specifying the Holland B along the historical tracks we

use the empirical formula of Vickery and Wadhera (2008),

which is based on RMW and the center-fix latitude.

We get minimum central pressure values from the

empirical wind–pressure relationship of Brown et al.

(2006) for Gulf of Mexico hurricanes. The relationship

describes how wind speeds are related to minimum

central pressures, with faster winds associated with lower

minimum pressures.

Table 1 lists the hourly interpolated and correspond-

ing characteristic values for Hurricane Eloise of 1975.

Eloise approached EAFB from the south on 22 Sep-

tember and made landfall a day later. Eloise had an

estimated minimum central pressure of 927 hPa 6 h

prior to landfall. Landfall pressure is estimated at 952 hPa.

The storm had a radius to maximum winds of 26 km and

an initial forward speed of about 4 m s21 that increased to

16 m s21 shortly after landfall. These sets of values are

considered to be the ‘‘storm vitals’’ because they are used

as input to the HAZUS model.

d. Hurricane wind-field model

The wind speed attached to each track point in the

storm vitals represents the fastest wind somewhere within

the hurricane. To get the fastest wind speed at any geo-

graphic location from a particular storm, we use a hurri-

cane wind-field model. The wind-field model used here is

part of the HAZUS hurricane hazard model that math-

ematically simulates hurricane wind speeds for the pur-

pose of estimating local wind risk for the design and

assessment of loads to structures. The model is described

in detail in Vickery et al. (2009b).

In brief, the model first generates a spatial wind field

at gradient height from each set of storm vitals along

the historical track using the gradient wind relation-

ship. Next, the gradient wind speed is adjusted to mean

near-surface (e.g., 10-m height) wind speed assuming

neutral stability in the atmospheric boundary layer.

Third, the mean wind speeds are adjusted on the basis

of local terrain specified from land-use land-cover maps

using gust factors. Greater friction associated with a

rougher land surface causes a weakening of the average

wind speeds. A time trace of the wind speed at any lo-

cation of interest allows us to get the highest local gust

velocity.

We compare the HAZUS-generated wind speeds at

the centroids of the six census tracts composing EAFB

with corresponding wind speeds from the Hurricane

Wind Analysis System (H*Wind; Powell et al. 1998) for

Hurricanes Ivan (2004) and Dennis (2005). The H*Wind

values are from a temporal sequence of wind-field ‘‘snap-

shots’’ as the hurricane moves onshore. Each snapshot is
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gridded output from an objective analysis using all ob-

servations over a 4–6-h period. As part of the analysis

system, data are quality controlled and processed to

conform to a height of 10 m with an open-terrain expo-

sure and with an averaging period of 1 min. We take the

gridded values and use an inverse-distance weighting in-

terpolation (30 nearest grid points) to estimate the wind

speed at the census-tract centroids. The wind speed values

are all within 2% of each other by varying the number of

nearest points between 10 and 30. The H*Wind values are

multiplied by 1.4 to get a 10-s gust consistent with the

HAZUS wind-field values.

Figure 2 is a scatterplot of the H*Wind versus

the HAZUS wind values in meters per second. The

correspondence is excellent for Ivan and good for Dennis.

HAZUS tends to overestimate the wind gusts when

compared with H*Wind in Hurricane Dennis in regions

of EAFB that experience weaker winds. At hurricane-

intensity gusts (33 m s21), the overestimate is 18%. The

correlation between winds from H*Wind and HAZUS for

Ivan (Dennis) is 0.99 (0.95), indicating the HAZUS wind

model matches the wind field of these historical hurri-

canes. The difference between the HAZUS-modeled and

objectively analyzed H*Winds output results from the

limits inherent in describing the wind field by single values

of Holland B and RMW, errors in modeling the atmospheric

boundary layer, and errors in the height, terrain, and spec-

ifications of the storm vitals (Vickery et al. 2009b).

TABLE 1. Storm vitals for Hurricane Eloise of 1975. The latitude f and longitude l in decimal degrees are those of the equal-interval

points along the track. The time is in UTC. The wind speed w (m s21), translation speed s (m s21), radius to maximum winds RMW (km),

minimum central pressure p (hPa), and Holland B parameter are from the extended best-track data. The column that is labeled ‘‘Inland’’ is

a binary variable indicating whether the storm location is over water (0) or land (1).

Date Time l f w p RMW Holland B s Inland

22 Sep 1300 289.51 25.93 39.3 968 26 1.33 3.9 0

22 Sep 1400 289.51 26.05 40.2 966 26 1.33 3.6 0

22 Sep 1500 289.51 26.17 41.1 964 26 1.33 3.5 0

22 Sep 1600 289.50 26.28 42.0 962 26 1.33 3.5 0

22 Sep 1700 289.46 26.39 42.8 960 26 1.32 3.7 0

22 Sep 1800 289.40 26.50 43.6 959 26 1.32 4.3 0

22 Sep 1900 289.31 26.62 44.5 957 26 1.32 4.8 0

22 Sep 2000 289.18 26.74 45.1 955 26 1.32 5.4 0

22 Sep 2100 289.04 26.87 45.9 954 26 1.32 6.0 0

22 Sep 2200 288.87 27.01 46.8 952 26 1.32 6.4 0

22 Sep 2300 288.69 27.15 47.9 949 26 1.31 6.8 0

23 Sep 0000 288.50 27.30 49.2 946 26 1.31 7.1 0

23 Sep 0100 288.30 27.46 50.7 943 26 1.31 7.3 0

23 Sep 0200 288.11 27.62 52.3 939 26 1.31 7.6 0

23 Sep 0300 287.90 27.80 53.9 935 26 1.31 7.8 0

23 Sep 0400 287.70 27.98 55.3 931 26 1.30 8.1 0

23 Sep 0500 287.50 28.18 56.4 928 26 1.30 8.5 0

23 Sep 0600 287.30 28.40 57.0 927 26 1.30 8.8 0

23 Sep 0700 287.10 28.64 56.9 927 26 1.30 9.2 0

23 Sep 0800 286.91 28.89 56.2 929 26 1.29 9.7 0

23 Sep 0900 286.73 29.17 55.1 932 26 1.29 10.2 0

23 Sep 1000 286.57 29.48 53.4 936 26 1.28 10.9 0

23 Sep 1100 286.42 29.82 51.4 941 26 1.28 11.6 0

23 Sep 1200 286.30 30.20 49.1 946 26 1.28 12.6 0

23 Sep 1300 286.20 30.61 46.6 952 26 1.27 13.5 1

23 Sep 1400 286.12 31.06 43.8 958 26 1.26 14.3 1

23 Sep 1500 286.05 31.53 40.9 965 26 1.26 14.9 1

23 Sep 1600 285.96 32.01 38.0 971 26 1.25 15.4 1

23 Sep 1700 285.85 32.51 34.9 976 26 1.25 15.6 1

23 Sep 1800 285.70 33.00 31.9 982 26 1.24 15.8 1

23 Sep 1900 285.51 33.49 29.0 987 26 1.23 15.8 1

23 Sep 2000 285.28 33.96 26.1 991 26 1.23 15.5 1

23 Sep 2100 285.02 34.40 23.4 995 26 1.22 14.8 1

23 Sep 2200 284.77 34.81 20.9 998 26 1.22 13.7 1

23 Sep 2300 284.52 35.18 18.6 1001 26 1.21 12.2 1

24 Sep 0000 284.30 35.50 16.6 1004 26 1.21 10.3 1

24 Sep 0100 284.12 35.76 14.9 1005 26 1.20 8.4 1
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3. Contemporary wind speed and damage loss
estimates

a. Wind speed exceedance probabilities

We input the storm vitals for each of the historical

hurricanes and obtain the HAZUS-generated peak 10-s

wind gusts at the geographic centroid of six census tracts.

The set of historical local wind speed maxima at a given

location is then modeled statistically using a peaks-over-

threshold (POT) method (Elsner et al. 2008a; Malmstadt

et al. 2010). The POT method estimates annual exceed-

ance probabilities for given wind speeds. The statistical

model is estimated for the winds at each of the census

tracts independently. The exceedance probabilities rep-

resent the contemporary risk of hurricane winds affecting

EAFB. Results of this procedure are shown in Fig. 3. The

plots display the annual exceedance probability versus

wind speeds for the six census tracts composing EAFB.

The plots are interpreted as follows. Considering the

southernmost census tract, we can expect wind gusts of

at least 40 m s21 (exceedance level) at the centroid of

the tract with an annual probability of slightly less than

10%. As hurricane intensity increases, annual probability

decreases. The statistical model is shown by the solid

curve, and the empirical estimates are shown with points.

For consistency we use a threshold value of 33 m s21 for

the statistical model.

Empirical estimates are made using the annual prob-

ability, which is the product of the yearly hurricane rate

times the exceedance probability. The yearly rate is the

number of hurricanes divided by the record length in

years. The exceedance probability for a particular wind

speed is approximated by dividing the rank of the hur-

ricane wind speed (the maximum gust has a rank of 1) in

the record by the number of hurricanes after subtracting

0.5 from the rank. In general, the points fall close to the

curves, indicating that the models fit the data well.

Results from our procedure compare favorably to the

result that is based on a track-relative climatological

model (Scheitlin et al. 2011), as shown by the red point

and confidence interval for the southernmost tract. Cen-

sus tracts farther from the coast have lower exceedance

probabilities for given wind speeds. The wind speeds are

based on the most recent 160 yr of climatological condi-

tions, and therefore the plots represent contemporary

estimates of annual exceedance probability.

b. Damage loss exceedance probabilities

Our primary interest is the damage losses caused by

high winds and how they might increase in the future.

HAZUS has a physical-damage model that is based on

wind load and resistance of building types. The wind-

induced pressure and windborne debris impacts are mod-

eled, and damages are estimated in terms of failure of the

building envelope. The damage model is coupled to a loss

model that computes losses to a building using modeled

building damage states together with empirical cost esti-

mations for repair and replacement (Vickery et al. 2006).

Loss estimates are a summation of direct property-damage

loss and business-interruption loss, although losses from

the former are typically an order of magnitude larger than

losses from the latter.

The method is more flexible than the traditional wind

speed–dependent loss curves because it allows the ap-

proach to be extended to model the effects of code

changes and mitigation strategies on reduction in dam-

age and loss. Moreover, economic damage loss is mod-

eled separately from physical damage to a building, and

the total loss is the sum of the economic loss plus the

physical-damage loss by census tract. Uncertainty levels

on the damage estimates are on the order of a factor of

2 (Schneider and Berman 2010). The uncertainty arises

from incomplete scientific knowledge of hurricane-winds

effects on buildings and facilities, simplifications needed

for a comprehensive analysis, and incomplete/inaccurate

inventories of the built environment and related eco-

nomic and demographic data. In cases in which incomplete

or inaccurate inventories of the built environment exist,

the range of uncertainty may exceed a factor of 2 or more.

We focus on losses for the residential portion of the

base, which is a U.S. Census–designated place with a

2000 census population of 8082. The tract numbers are

FIG. 2. H*Wind vs HAZUS wind speed gusts over EAFB for

Hurricanes Ivan (2004) and Dennis (2005). The dotted lines are the

regression lines that are based on the six census block values for

each hurricane. The solid line shows y 5 x.
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212 and 214. HAZUS estimates there are 4480 buildings

in the region, which have an aggregate total replacement

value of $717 million (in 2006 U.S. dollars). Approxi-

mately 80% of the buildings are residential, 11.5% are

commercial, 5% are government, and 2% are industrial,

with the remaining percentage divided among agricul-

tural, religious, and education categories.

The loss estimates are based on aggregated type and

floor-area inventories in each tract. The losses (repair,

replacement, and business interruption) are normalized

to 2006. So the interpretation of a $9 million loss esti-

mate from Hurricane Eloise, which hit in 1975, is the loss

expected for the exact same storm hitting the same lo-

cation but with 2006 exposure levels. We model the set

of wind-loss estimates using the same statistical method

as was used for modeling wind speed. Losses are for

nonmilitary buildings. Losses from military infrastructure

require building-stock data that are substantially differ-

ent from those used here.

The amount of damage increases sharply with in-

creases in wind speed from a greater fraction of build-

ings failing and from a greater number of buildings

suffering damage. Damage states in the model are de-

fined as minor, moderate, severe, and complete destruc-

tion (failure), with the probability of each type increasing

with increasing wind speed. For instance, a one-story,

single-family, wood house exposed to a 54 m s21 wind

has a probability of failure of about 1%, a probability of

severe damage of 5%, a probability of moderate dam-

age of 32%, and a probability of minor damage of 85%.

With a 60 m s21 wind, these values increase to 5%, 25%,

65%, and 98%, respectively.

As an example, we compare the model-estimated

damage losses between Hurricane Opal in 1995 and

FIG. 3. Annual exceedance probabilities for hurricane wind speeds. The line represents a statistical model that is based on the method of

POT. The empirical estimates are shown as points. The red point and line in the bottom-left panel (Santa Rosa Island) is the wind speed

exceedance and 90% confidence interval that are based on the track-relative climatological model of Scheitlin et al. (2011). The two

shaded census tracts correspond to where damage losses are estimated.
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Hurricane Dennis in 2005. Opal, which had a peak

wind gust of 58 m s21, created moderate damage to

1350 (.30%) of the buildings. In contrast, Dennis,

which had a peak wind gust of 41 m s21, created

moderate damage to only 11 (,1%) of the buildings.

The ratio of model-estimated residential damage to

the total value of the residences for Opal is 94%, as

compared with 4.4% for Dennis.

Figure 4 shows a histogram of wind-damage losses

and a plot of the losses as a function of annual proba-

bility. The distribution is positively skewed even on the

logarithmic scale (base 10). A value of 8 corresponds

to a $100 million (M) loss. Loss amounts to the right

of the distribution mode are of concern here. The larg-

est loss, in excess of $174 M, occurred with the 1926

hurricane. We model losses exceeding $5 M with the

model and empirical estimates shown in the right panel

of Fig. 4. As with the wind speeds, the empirical esti-

mates (points) are made using the inverse of the return

rate. Because the points fall close to the curve, we are

confident that the model provides a good summary of

the data.

Again, because the loss exceedance curves are

based on storminess over the past 160 yr, the annual

probabilities are contemporary estimates. Next, we

examine future loss exceedance curves after the hur-

ricane wind speeds are statistically adjusted, with the

magnitude of the adjustment being in accord with the

Intergovernmental Panel on Climate Change (IPCC)

estimates.

4. Changes in hurricane intensity

Recent research involving theory, models, and data

provides the background for estimating possible future

damage losses from hurricanes. For example, the heat-

engine theory of tropical cyclone intensity argues for an

increase in the maximum potential intensity of hurri-

canes with increases in sea surface temperature. Model

projections that use scenario A1B from the IPCC Spe-

cial Report on Emissions Scenarios indicate an increase

in the frequency of average tropical cyclones of 2%–

11% globally by the late twenty-first century, with the

frequency of the most intense hurricanes likely increas-

ing by a larger percentage (Knutson et al. 2010). Data

analysis and modeling using a set of homogeneous trop-

ical cyclone winds show that the strongest hurricanes are

getting stronger—in particular, in the Gulf of Mexico

and Caribbean Sea—with increases of as high as 20% per

degree Celsius for the strongest hurricanes (Elsner and

Jagger 2010). Here, we estimate future hurricane wind

speeds and corresponding wind losses for EAFB. We

begin by estimating the potential change in the strength

of hurricanes over the Gulf of Mexico as Gulf water tem-

peratures increase.

The first step is to estimate the potential influence

of global warming on hurricane intensity. Knutson and

Tuleya (2004) estimate an average 8% increase in hur-

ricane intensity for every 18C rise of SST on the basis of

global tropical cyclone activity and for average hurri-

cane intensity. Here, we examine evidence for hurricane

FIG. 4. Wind-damage losses from the set of historical hurricanes. (a) Histogram of the logarithm (base 10)

of losses. (b) Annual exceedance probabilities for damage losses. The line represents a statistical model that

is based on the method of POT. The losses are summed from the two census tracts composing the main EAFB

(see Fig. 3).
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intensity increases over the Gulf of Mexico. We define

the Gulf of Mexico as the region between 808 and 988W

longitude and between 198 and 328N latitude. We choose

all storms entering or developing within this domain over

the period 1900–2009. The choice results in 450 storms. We

eliminate the four storms having only a single 1-h position

within the domain.

The SST data are the National Oceanic and Atmo-

spheric Administration’s reconstructed sea surface tem-

peratures, version 3, (SST v3) from the Earth System

Research Laboratory Physical Science Division and are

available in network common data form (netCDF) for-

mat. NetCDF is a set of software libraries and machine-

independent data formats that supports the creation,

access, and sharing of array-oriented scientific data. We

consider the July SST value averaged over the Gulf of

Mexico region as an indicator of the heat content avail-

able for hurricanes during the peak season of August–

October. Of the 39 hurricanes to affect EAFB, all

occurred after 1 July and 32 occurred after 1 August.

July SST is a reliable indicator of the amount of ocean

heat available to hurricanes before the season begins.

We match the year of the July SST with the year of the

per-storm maximum tropical cyclone intensity so that

years with more than one tropical cyclone in the Gulf of

Mexico will have the same July SST value. Using this

dataset, we model the trend in tropical cyclone intensity

as a function of SST using quantile regression. Quantile

regression, introduced by Koenker and Bassett (1978),

extends the ordinary least squares regression model to

conditional quantiles (e.g., 90th percentile) of the re-

sponse variable. Quantiles are points taken at regular

intervals from the cumulative distribution function of

a random variable. The quantiles mark a set of ordered

data into equal-sized data subsets.

For example, of the 446 maximum-storm-intensity

values in our Gulf of Mexico dataset, 25% of them are less

than 22 m s21 and 50% are less than 31 m s21. Thus, there

is an equal number of tropical cyclones with intensi-

ties between 0 and 22 m s21 as there is between 22 and

31 m s21. When we state that the median maximum inten-

sity is 31 m s21, we mean that one-half of all cyclones have

intensities of less than this value and one-half have in-

tensities that are greater. In a similar way, the quartiles

(deciles) divide the sample of intensities into 4 (10) groups

with equal proportions of the sample in each group. The

quantiles, or percentiles, refer to the general case.

Figure 5 shows the percent change in maximum tropical

cyclone intensity with respect to a 18C change in SST as

a function of tropical cyclone intensity over the Gulf

of Mexico using quantile regression (Elsner et al. 2008b;

Jagger and Elsner 2009). To examine the possibility that

biases in the early hurricane records will influence the

results, we model the data first by using all storms since

1900 (Fig. 5, top panel) and then all storms since 1944. The

points indicate the trend estimate computed from a quan-

tile regression model for intensity quantiles from 0.01 to

0.99 by 0.01, and the vertical bar indicates 1 standard error

about the estimate on the basis of the assumption of in-

dependent and identically distributed residuals, as is com-

monly used with normal linear regression. The nonlinear

trend line is shown in red, and the 95% (nonsimultaneous)

confidence band around this trend is shown in gray.

The overall tendency is clear in showing little change in

intensity for the weaker tropical cyclones but a large and,

for some quantiles, statistically significant upward trend in

intensity for the stronger tropical cyclones. The red line

indicates a local polynomial regression fit through the

points. The regression fit at intensity w is made using points

in the neighborhood of w weighted by the distance from w.

FIG. 5. Change in Gulf of Mexico tropical cyclone intensity. The

change is modeled using data (a) from 1900 to 2009 and (b) from

1944 to 2009. The percentage change in intensity is with respect to

a 18C change in SST over the Gulf of Mexico and is a function of

storm intensity. The dot and vertical line indicate the best estimate

of the change and the 1 standard error. The red line is a local re-

gression through the set of points, and the gray region defines the

95% confidence band on the trend.
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The neighborhood size is set at a constant of 75% of the

points. The nonlinear trend line does not change much

when the early twentieth-century storms are removed,

although the percentage increases are somewhat larger

(note the change of scale on the vertical axis). In fact, the

increase at the 90th-percentile storm intensity is 14% using

storms dating back to 1900 as compared with 21% using

storms only dating back to 1944.

It might be argued that the upward trend (as a func-

tion of SST) in the intensity of Gulf of Mexico tropical

cyclones is not germane to the subset of those hurricanes

affecting EAFB. To examine the case for this argument,

we rerun the analysis on a smaller domain covering only

the area from 858 to 958W and from 258 to 328N. This

domain bounds the last 24 h of the historical hurricane

tracks. We find a similar nonlinear trend in the per-

centage change as a function of intensity quantile, with

an increase for the strongest hurricanes approaching

20%. The larger percentage increase might be related to

the fact that the Loop Current, with its high ocean heat

content, often exists in this region.

5. Upward trend in Gulf of Mexico sea surface
temperature

Next, we quantify the trend in SST and get an estimate

of the increase in Gulf warmth by the year 2100. Esti-

mates of global SST increases by 2100 range from 18 to

38C on the basis of numerical climate models. We take

a similar approach as with hurricane intensity and ex-

amine the July SST data over the Gulf of Mexico and

show how it is changing over time.

Figure 6 shows the time trend in Gulf of Mexico SST

since 1900. The warming is pronounced and statistically

significant. The trend estimate shown as the black line

amounts to 0.688C (100 yr)21. The significance can be

seen by the 95% confidence band (between the two red

lines). The magnitude of warming is consistent with re-

ports of between 0.48 and 1.08C (100 yr)21 for global

tropical ocean warming (Deser et al. 2010).

Note that we do not necessarily expect an extrapola-

tion (linear at that) to represent the future. Yet, the

method provides a quantitative estimate of what Gulf

of Mexico hurricanes might encounter in the twenty-

second century that is consistent with estimates of an-

thropogenic global warming.

6. A model for hurricane intensities in the Gulf of
Mexico to 2100

An estimate of the per-degree-Celsius SST increase in

hurricane intensities (as a function of intensity), to-

gether with an estimate of the SST warming by 2100,

allow us to estimate the increase in wind speeds for each

historical hurricane. The assumption is that the set of

historical hurricanes is a representative sample of the

frequencies and intensities of future hurricanes but that

the strongest hurricanes will be stronger as a result of the

additional warmth in the Gulf of Mexico. The approach

is similar to that used in Mousavi et al. (2010) to estimate

the potential impact of hurricane intensification and sea

level rise on coastal flooding, but here we use wind speed

instead of central pressure deficit for the change in

hurricane intensity.

Let w be the observed wind speed along the track of

a historical hurricane; then the equation for w2100 rep-

resenting the wind speed for the same hurricane in 2100

is given by

w2100 5 [1 1 Dw(w) 3 DSST 3 90]w, (1)

where Dw(w) represents the fractional change in wind

speed per degree-Celsius change in SST as a function of

wind speed as described by the red curve in Fig. 5a;

DSST represents the time trend in SST expressed per

year; and 90 is the number of years.

Our model for intensities to 2100 is applied to wind

speeds along the track for each historical hurricane af-

fecting EAFB. Figure 7 shows the relationship between

the historical tropical cyclone winds and the tropical

cyclone winds in 2100. For the weaker winds the dif-

ference between historical and future speeds is very

small, but for the strongest winds the future is windier.

Each wind speed value in the historical dataset of hur-

ricanes is transformed in such a way that the order is

preserved. That is, if the wind speed was the 0.9 quantile

FIG. 6. Trend in Gulf of Mexico SST. The change in SST is the time

trend over the past 110 yr. The points indicate the area-averaged SST

value for July of each year over the period 1900–2009. The red line is

the least squares regression line through the data, and the gray region

defines the 95% confidence band on the trend.
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in the historical dataset, it is the 0.9 quantile in the ad-

justed dataset but is transformed according to Eq. (1).

7. Future damage losses

The wind speeds along the track points are adjusted

according to the model described in the previous sec-

tion. However, the track-point locations and all other

storm vitals remain the same because there is no obser-

vational, theoretical, or modeling evidence for changes

to these storm characteristics in a warmer world. The

new storm vitals are subsequently used by HAZUS to

generate future loss estimates. We further assume (unre-

alistically) that there is no change in the number of build-

ings subjected to the increased winds, and all losses are

expressed in 2006 dollars.

Table 2 shows the landfall wind speed, the peak gusts,

and the wind-damage loss estimates for Eloise and

a storm identical to Eloise occurring in 2100. The dif-

ference in landfall wind speed amounts to an increase of

only 0.6%; the peak census-tract wind speed increases

by 3.9%, however. This increase in wind speed results

in a 45% increase in total wind-loss damage across the

region. The amplification of wind speed increases by

approximately an order of magnitude is higher than the

factor-of-5 amplification that is based on historical hur-

ricane winds and damage in the United States (Pielke

et al. 2008). The greater damage might be a manifestation

of the relative differences in housing construction for this

part of Florida as compared with elsewhere, especially

the Northeast.

Statistical models of loss estimates for contemporary

and future hurricanes are compared in Fig. 8. The loss

curve using the historical hurricanes (contemporary) is

in black and is the same curve that was shown in Fig. 4b.

All dollar amounts are normalized to 2006. The values

are transformed to the common logarithm (log base 10)

of dollar amounts. The loss curve from future hurricanes

is in blue and is based on the wind speed model of the

previous section. Both the contemporary and future loss

models use a threshold of $5 million for the minimum

loss event. No adjustment is made for future inflation,

wealth, or building stock.

As expected, the probability of future losses is higher,

but in particular for the largest loss events. For annual

exceedance probabilities of less than 1 in 11 yr, future

losses are projected to be greater than contemporary

losses, assuming all else remains the same. The 90%

confidence band around the percent increase is based

on rerunning the loss model using winds estimated from

the upper and lower values of the 95% confidence limits

on the nonlinear trend line (Fig. 5) of wind speed as

a function of SST and the upper and lower values of the

95% confidence limits on the trend in SST (Fig. 6). The

results show that, if future projections of hurricane in-

tensity are realized, coastal losses on the 1-in-100-yr (1 in

500 yr) storm will increase by 36% (52%) relative to

today’s losses, making EAFB more vulnerable to future

losses from the strongest hurricanes.

8. Summary and model limitations

Hurricanes and tropical storms pose a significant nat-

ural threat to coastal military infrastructure. Here, we

modeled contemporary and future wind speeds and dam-

age losses from hurricanes affecting EAFB using statistical

and dynamical models.

The results show that, if future extrapolations and

projections of hurricane intensity are realized, coastal

losses will increase for the strongest hurricanes by 36%

[(13%, 76%) 5 90% confidence interval] relative to

FIG. 7. Hurricane wind speeds (m s21) from historical hurricanes

on the horizontal axis vs wind speeds from the same hurricanes

occurring in 2100 on the vertical axis. Note the small change in the

weaker wind speeds but the larger change (increase) in the stron-

gest wind speeds.

TABLE 2. A comparison of Eloise and an analog of Eloise in

2100. The wind speed of the hurricane at landfall is given along with

the peak gust over the two EAFB census tracts. The wind-damage

losses in millions of dollars are output from the HAZUS model.

Eloise (1975) Eloise analog (2100)

Landfall Wmax (m s21) 46.6 46.9

Peak gust (m s21) 45.6 47.4

Wind-damage losses ($M) 9.05 13.2
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today’s losses, making EAFB progressively more vul-

nerable to hurricanes. The approach is important to the

U.S. Air Force in terms of quantifying the possible risk

in the coming years in light of potentially warmer SSTs

and stronger tropical cyclone winds. The model com-

pares changes in wind speed as a statistical function of

temporal changes in SST rather than directly modeling

temporal changes in wind speed.

Contemporary damage estimates are based on the

record of past hurricanes. Although relying only on the

relatively few historical events might lead to larger

biases in assessing short-term risk (1–10 yr) when com-

pared with the simulation method widely employed in

the insurance business, it allows us to condition the long-

term risk (greater than 50 yr) on a changing climate.

The estimated future losses depend on a number of

assumptions that can be examined in more detail. In

particular, our approach assumes a linear trend in SST.

This is a reasonable fit for the historical data, but it might

not be the case over the next 90 yr. Even with a linear

trend, the rate of change, although consistent with global

estimates and projections of SST, may be lower (or

higher) than what is used here.

Also, Eq. (1) is conservative with respect to the un-

certainty estimates because the change in SST is based

on 90 yr but the historical storms all occur before 2010.

We could instead use the prediction error for each storm

and adjust the change in SST on the basis of the actual

storm year. Moreover, the local regression smoother

removes noise from the analysis, and therefore our con-

fidence intervals are too small. A bootstrap over the en-

tire model process would be a better way to estimate

confidence bands.

Furthermore, the assumption that the incidence of

hurricanes will be unchanged in the future might need

to be modified. In fact, a recent study using numerical

simulations indicates that the frequency of hurricanes

across the Atlantic basin may decline in a warmer world

(Knutson et al. 2008) although it is unclear as to what

physical mechanism might cause such a decline.

More technical assumptions include the threshold

parameter used in the extreme-value statistical model

for losses, the value of the Holland B parameter, and the

radius to maximum winds. Variations in these values will

result in changes to our estimate of future losses. Our

method represents an early attempt to quantify how

much greater hurricane wind–related losses might be in

the future, the above caveats notwithstanding. It will

certainly be refined and improved.
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