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ABSTRACT

Previous groupings of Atlantic tropical cyclone activity into baroclinically influenced and tropical-only hur-
ricanes have required subjective evaluations. In this paper, a set of statistically significant and valid rules are
introduced that objectify this previously subjective evaluation. This is done with the aid of classification trees. .
The tree classifications are better than 90% accurate with respect to an earlier subjective discrimination. Objective
classification rules are the basis for a climatology of Atlantic hurricanes. The average latitude of origin for
tropical-only hurricanes is 18.8°N, compared to 29.1°N for baroclinically influenced storms. The baroclinically
influenced hurricane season extends from-mid May to December, while the tropical-only season is largely con-
fined to the months of August through October. There is a fairly abrupt shift to fewer numbers of tropical-only

hurricanes around 1960.

1. Introduction

The annual number of hurricanes in the Atlantic var-
ies from year to year. Long-lead forecasts of the num-
ber of storms are routinely issued (e.g., Elsner et al.
1994; Gray 1994). Forecast skill comes from variables
of the large-scale tropical environment, including the
stratospheric winds, the state of the El Nifio—Southern
Oscillation, and meteorological anomalies over western
Africa and over the Caribbean (Gray et al. 1992, 1993,
and 1994). This is to be expected since many Atlantic
hurricanes have origins in tropical easterly waves.

Hurricanes can form from other sources as well; it
is sometimes observed, for example, that frontal intru-
sions from latitudes north of the Tropics provide or-
ganization for initiation of tropical depressions. In ad-
dition, baroclinic disturbances sometimes serve to in-
tensify an otherwise benign tropical depression. It thus
seems natural to consider the hurricane season as the
sum of tropical-only and baroclinically influenced
storms.

In fact, Hess et al. (1995) show a significant increase
in hindcast skill when using prediction models that in-
corporate both types of storms separately. To predict
the annual number of hurricanes, an ordinary least
squares (OLS) linear regression is used to estimate the
number of tropical-only hurricanes (Hr), and a sea-
sonal average number of baroclinically influenced hur-
ricanes (Hp) is added to this. The model can be ex-
pressed as
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H=ﬁ1+ﬁ3.

To develop their forecast model, Hess et ai. (1995)
classified hurricanes over the period 1950-93. Strati-
fication was done by examining the summaries of past
tropical cyclone seasons published in Monthly Weather
Review. These reviews describe the life cycle of each
tropical storm individually for each season. Typically
the descriptions are adequate to decide whether baro-
clinic influences were a factor. Other sources included
daily synoptic charts and consultation with N. LaSeur,
who flew on many of the pre—satellite era reconnais-
sance missions.

Figure 1 shows the results of Hess et al.’s (1995)
stratification, where the O is the initial location of a
tropical only hurricane and + is the initial location of
a baroclinically influenced storm. A line of latitude near
20°-23°N offers a good first guess at objectively di-
viding the two groups, particularly over the eastern At-
lantic. Note, however, that this simple division does not
work over the Caribbean or the Gulf of Mexico, where
it appears that more rules are needed.

The limitation of this work is that the separation of
storms was done subjectively. The method of Hess et
al. (1995) was subjective in that it was done by an
individual (in consultation with others ) looking at each
storm separately. This does not mean that there are no
underlying physical mechanisms supporting the clas-
sification. On the contrary, as shown in Hess et al.
(1995), the subjective classification is consistent with
some underlying physical processes. Further, it does
not mean that someone else looking at the same re-
sources would produce an identical classification. That

is, there will always be debate about the classification
of some storms.
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FiG. 1. Location where each of the 255 tropical cyclones over the period 195093 reached
hurricane strength for the two groups of baroclinically influenced (O) and tropical-only (+) hur-

ricanes, after Hess et al. (1995).

What the aforementioned limitation implies is that
without some kind of objective classification other re-
searchers will be reluctant to completely embrace this
kind of storm separation because they lack confidence
in the uniqueness or repeatability of the classification.
Thus, a set of rules is developed here that will classify
hurricanes into the two groups in an objective way. The
rules classify at better than 90% accuracy and allow for
a climatology over the period 1886—1994. The rules
will provide guidance for classifying future Atlantic
hurricanes, but the best classification will result from
consideration of all data. We emphasize that this work
provides an objective classification for approximating
a particular subjective grouping, which is different
from constructing an objective discrimination from true
classifications.

The paper is outlined as follows. The data used in
the present study are described in section 2. Section 3
provides first a rationale for using a tree-based regres-
sion on this problem and then a description of the clas-
sification methodology. Statistics and results of the pro-
cedure are given in section 4. A comparison climatol-
ogy of tropical-only versus baroclinically influenced
hurricanes is given in section 5.

2. Data

Data for this study were obtained from Atlantic trop-
ical cyclone ‘‘best’’ track and intensity records man-
aged by the Tropical Prediction Center (formerly the
National Hurricane Center, Jarvinen et al. 1984),
where best refers to an accurate assessment of storm
location based on a postanalysis of available data. The
dataset extends back to 1886 and includes all tropical
cyclones that reached tropical storm strength. Each

storm has latitude and longitude coordinates and max-
imum sustained winds every 6 hours during the storm’s
existence. Data are most reliable after 1944 when the
U.S. Air Force began aircraft reconnaissance missions
to investigate individual storms over the Atlantic.

Atlantic tropical cyclones are grouped into four
stages. A depression is defined as a closed low-level
wind circulation with sustained speeds of generally be-
tween 10 and 18 m s~'. A tropical storm is a tropical
cyclone with maximum sustained low-level winds be-
tween 18 and 32 ms™'. A tropical cyclone is desig-
nated as a hurricane when sustained winds exceed 32
m s ™', and it is called an intense (or major) hurricane
when the winds exceed 50 ms™".

The idea is to develop a set of classification rules for
the hurricanes originally grouped subjectively by Hess
et al. (1995). The classification will be most reliable
for storms with data over their complete morphology,
including the depression stage. As such, we exclude
storms in the 1950-93 period for which there are no
records of a tropical depression. This leaves a total of
209 storms out of the 255 originally grouped. Of the
46 storms not included, 28 were tropical only and 18
were baroclinically influenced. These numbers reflect
the fact that missing depression-stage data is more
likely for earlier storms in the record. As an example,
Hurricane Hazel in 1954 was not included because the
best track data does not contain information on this
storm until it had maximum sustained winds of 60
knots.

Table 1 is a random sample of the hurricanes used
in the initial classification. Each storm contains the Jul-
ian day, the latitude, and the longitude for initial de-
pression and initial hurricane stages, that is, the day and
position for which the storm was first reported as a
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TaBLE 1. A small sample of the hurricanes and data used in the objective classification study, where day D and day H are the Julian days
on which the storm first reached depression and hurricane strengths, respectively; long D and long H are the initial depression and hurricane
longitudes (°W); respectively; lat D and lat H are the initial depression and hurricane latitudes (°N); and Hy and Hj are tropical-only and
baroclinically influenced hurricanes, respectively, according to Hess et al. (1995).

Year Name Day D Long D Lat D Day H Long H Lat H Category
1951 Charlie 224 457 12.2 228 62.5 15.4 Hy
1952 Fox 294 77.6 11.8 296 82.2 16.8 Hr
1956 Greta 304 75.5 17.8 309 69.6 23.3 Hy
1957 Carrie 245 21.7 13.0 248 32.6 14.5 Hr
1959 Flora 252 45.8 16.8 254 41.3 28.7 Hg
1963 Beulah 232 49.5 13.7 234 56.9 17.9 Hy
1964 Gladys 257 443 14.7 258 52.1 18.8 Hr
1966 Lois 308 50.0 26.5 312 49.8 24.8 Hp
1969 Blanche 223 71.7 28.1 223 69.9 355 Hy
1971 Ginger 249 71.5 25.5 254 63.3 279 Hy
1974 Fifi 257 65.0 15.3 260 80.2 16.6 Hr
1977 Dorothy 269 71.5 28.5 271 59.7 355 Hg
1979 Gloria 247 21.0 15.5 250 372 244 Hp
1980 Allen 213 30.0 11.0 216 51.4 124 Hy
1985 Elena 240 74.0 19.8 241 85.0 25.0 Hr
1988 Gilbert 252 54.0 12.0 255 66.8 15.9 Hr
1989 Hugo 253 20.0 13.2 256 435 12.8 Hr
1993 Harvey 261 61.8 26.7 263 55.2 35.6 Hg

tropical depression and a hurricane, respectively. Thus,
there are six independent variables for each hurricane.
The Hess et al. (1995) classification is also listed,
where H; is a tropical only hurricane and Hj is a baro-
clinically influenced storm. This grouping defines the
dependent variable used to build a classification tree.
Figure 2 shows the prehurricane track of the baro-
clinically influenced Hurricane Arlene of 1967 and of
the tropical-only Hurricane Hugo of 1989. In general,
tropical-only hurricanes originate from Cape Verde

waves and maintain a westward motion, as was the case
with Hugo. Baroclinically influenced hurricanes, on the
other hand, tend to have a northward component and
often do not reach hurricane strength until after cur-
vature to the north (recurvature), like Arlene.

3. Classification method

To develop an effective set of classification rules for
our purposes, the method should have several charac-
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FiG. 2. Tracks of Hurricanes Hugo (1989) and Arlene (1967) during their tropical depression

and tropical storm stages. Hugo is classified as a tropical-only and Arlene as a baroclinically
influenced storm, according to the subjective classification of Hess et al. (1995).
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teristics to ensure its validity. Among the most impor-
tant of these considerations is that the methodology
should allow for statistical significance testing by way
of cross validation, allow for nonfunctional relation-
ships between predictor variables and the classification
rules (algorithm), and provide useful and easily inter-
pretable results. Purely empirical classification tech-
niques, such as linear programming methods, do not
allow for statistical validation of the results, while
purely statistical methods do not easily allow for non-
functional relationships between the predictors and the
prediction groups.

Hence, to create a set of objective classification rules
for the subjective classification developed by Hess et
al. (1995), we employ a statistical classification algo-
rithm known as partially adaptive classification trees
(PACT, Shih 1993). PACT unifies the multivariate sta-
tistical methodology of linear discriminant analysis
(LDA, Mardia et al. 1979) and tree-structured classi-
fication methods (CART, Breiman et al. 1984 ). As will
be discussed, PACT combines the advantages of both
methodologies and meets the desired criteria specified
above. We note that the classification method algorithm
chosen here is not unique; however, it is quite simple
to implement and yields satisfactory results for our pur-
poses. For instance, the PACT algorithm halved the
LDA error rate for our classification problem, as dis-
cussed in the results section. Readers wishing to inves-
tigate other classification methods are encouraged to
refer to Brieman et al. (1984) and Hand (1981).

A brief review of LDA and another statistical tech-
nique known as analysis of variance (ANOVA, Casella
and Berger 1990) is needed in order to understand how
the PACT algorithm creates its classification rules. Lin-
ear discriminant analysis is a multivariate statistical
technique that seeks to classify an observation into a
group or category according to the observed values of
several associated predictor variables. The choice of a
linear discriminant function (LDF) depends upon the
nature of the data involved. The most commonly used
LDF assigns group classifications by using a general-
ized distance function (the Mahalanobis distance) that
measures the distance of the values of the predictor
variables, corresponding to an observation, to the
means of those predictor variables for each classifica-
tion group (Mardia et al. 1979). An observation is then
assigned to that group for which its distance measure
to the group mean (the centroid) is the smallest.

ANOVA is a technique to determine how much a
measured response variable, or variables, changes ac-
cording to different group classifications and to ascer-
tain the corresponding statistical significance (Casella
and Berger 1990). This methodology uses least squares
techniques to estimate the sources of variances, so that
a single test statistic (the F statistic) can indicate the
statistical significance of the variance caused by the
group classifications. PACT also employs another sta-
tistical technique that measures how much variance is
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caused by the group classifications. Known as Levine’s
test, it uses techniques that are based on ANOV A meth-
ods. Levine’s test is quite robust and formally tests for
equality of group variances in continuously valued
data. Like ANOVA, Levine’s test also creates the F
statistic as its single test statistic.

PACT itself functions by emulating the decision
trees created by CART. A decision tree is a set of se-
quential rules that one follows in order to classify an
observation. The name itself comes from the appear-
ance of the rules as written on a sheet of paper, which
is somewhat similar in appearance to a flow chart.
Within a decision tree, each time a decision (or clas-
sification rule) is to be performed, we are at what is
called a decision node. The result of the decision, true
or false, shunts the decision into a choice of two other
nodes, which themselves may be either more decision
nodes or what are known as terminal nodes. A group
classification is assigned for each terminal node. Fol-
lowing this procedure, we begin at the first decision
node (the top of the tree) and ultimately finish in a
terminal node at some part of the tree.

For an example of this, and to illustrate the major
advantage of PACT over LDA, refer to Fig. 3. Here,
an artificially created dataset shows a separation of H,
and Hp by longitude and latitude. An optimal set of
classification rules would stratify the variable space
(here, just the regions ) in the simplest manner possible,
so that we could accurately classify every single ob-
servation. For the case here, the stratification by cate-
gory is not functional, that is, there is no linear discrim-
inant function that can divide this region into the proper
subregions for H; and Hz. In other words, since we
have two categories (Hr and Hp) and two predictor
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FIG. 3. A contrived example showing the difference in resuits be-
tween a PACT and an LDA classification scheme. Locations of baro-
clinically influenced hurricanes are denoted by circles and locations
of tropical-only hurricanes by pluses. The splits from the PACT al-
gorithm are represented by two vertical lines, and the split from the
LDA algorithm is represented by the LDF line.



2884

variables (latitude and longitude), LDA is limited to
separating the regions by the best straight line that can
be drawn in the plane. Here, that line is the dashed
diagonal line; the classification accuracy achieved by
the LDA method is only 0.487.

In contrast, PACT is not limited by the nonfunctional
relationship. The PACT algorithm here produces a de-
cision tree with two decision nodes and three terminal
nodes and achieves a classification that is 100% accu-
rate. The first decision node is represented by the
dashed line labeled split 1. At this decision node, the
question is asked, Does the observation have a longi-
tude of less than 62.3? If yes, than we are shunted to a
terminal node with a tropical-only label. Otherwise, we
are shunted to the second decision node, represented
by the dashed line labeled split 2, which determines
whether or not longitude is greater than 67.5. If yes,
then the observation is shunted to a terminal node and
classified as tropical only; otherwise it is shunted to the
other terminal node and classified as baroclinically in-
fluenced. Note that the PACT algorithm ignores lati-
tude entirely in its decision process as it contains no
useful information, while the LDA spuriously uses lat-
itude in its region separation, separating the regions
with a line that is constructed as a linear combination
of the two predictor variables. If latitude had contained
useful information, then PACT would have also used
this at a decision node, but in a univariate fashion. That
is, PACT separates the regions in a univariate fashion
so that we do not have to evaluate linear combinations.
This is particularly useful in high dimensional datasets.

PACT creates its classification rules by using a hy-
brid of several statistical methods. The procedure com-
mences by creating an initial decision node and then
adding further nodes as constrained by the tree growth
parameters. Since it is possible to always create a 100%
classification accuracy by completely partitioning the
predictor space, a criterion is needed to determine the
optimal tree size. Here, this was achieved by using a
direct stopping rule and then maximizing the cross-val-
idated classification accuracy as a function of the stop-
ping rule. A direct stopping rule stops the tree growth
process once the number of observations remaining
within a terminal node falls below a certain percentage
threshold of the total number of observations. In other
words, suppose that a direct stopping rule of 6% was
chosen. Then, if the number of observations in a par-
ticular node is less than 6% of the initial total, the
growth process is stopped for that node and it is as-
signed as terminal.

The algorithm functions as follows. First, if the ini-
tial or any subsequent node has a sufficient number of
observations, the algorithm performs an ANOVA on
each potential predictor variable and selects the vari-
able that has the most significant F statistic. To avoid
ignoring variables that have a large degree of nonfunc-
tional group separation, Levine’s test is also conducted
to identify which variable has the largest inequality of
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variances caused by group classification. The F statis-
tics for this test are also obtained. PACT selects the
splitting variable for the decision node based on the
variable having the largest F value over both test pro-
cedures.

Next, the algorithm performs a one-dimensional lin-
ear discriminant analysis, using the variable selected
above. The decision rule for the decision node in ques-
tion is created from the LDF, which partitions this node
into two new (sub)nodes. Finally, each of these nodes
is checked to see if it has a sufficient number of obser-
vations, and the process is repeated until all of the re-
maining nodes become terminal nodes, thus completing
the tree.

The classification tree, once completed, allows for
rather straightforward group classifications. While the
rules strictly create a yes/no classification assignment,
probabilities of assignments may also be estimated by
one of two ways. One method is simply to note the
observed classification error for the corresponding ter-
minal node and calculate the group assignment proba-
bility as one minus the node misclassification error.
Since this method ignores the actual values of the pre-
dictor variables outside of the classification cutoffs, an-
other method consists of obtaining the corresponding
group classification probabilities for the LDF used at
each involved decision node and then using conditional
probabilities to estimate the group assignment proba-
bilities. Note that since LDA is technically a Bayesian
classifier (Mardia et al. 1979), Bayesian prior proba-
bilities may be utilized in the LDFs for each decision
node. The PACT algorithm allows for this; however,
we have not made use of prior probabilities in this
study.

4. Results

The above procedure is applied to the dataset con-
sisting of six independent variables for each of the 209
hurricanes to obtain a classification tree with eight de-
cision rules and 9 terminal nodes. The PACT algorithm
gives a relative ranking of importance for independent
variables based on the reduction of variance when the
variable appears either in decision rules or as a surro-
gate. The three most important variables in order of
importance are initial depression longitude, initial de-
pression latitude, and initial hurricane latitude.

The decision rules are listed in Table 2. The rules
are used on the 209 hurricanes to get an in-sample (re-
substitution) error of 0.077, which means there are 16
storms classified incorrectly by the classification tree.
The cross-validated error is 0.083, implying that out-
of-sample classification of hurricanes using the above
rules will have an accuracy exceeding 90%.

As suggested previously, there are different ways to
construct classification rules. For example, LDA,
which is based on linear regression, is often used in
classification problems. So for a comparison we apply
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TABLE 2. Objective classification rules for determining hurricane
type (either tropical only Hr or baroclinically influenced Hj) based
on initial depression and initial hurricane data, where lat H is the
latitude at which the storm reached hurricane strength, and lat D and
long D are the latitude and longitude at which the disturbance reached
depression strength, respectively.

Rule
number Rule Action

1 Is lat H < 23.5°N? If yes, rule 2, else, rule 3.

2 Islong D < 68.7°W?  If yes, H = Hp, else, rule 4.

3 Is lat D < 19.85°N? If yes, rule 5, else, H = Hj.
4 Is lat D < 20.4°N? If yes, rule 6, else, H = Hr.

5 Islat D < 17.35°N? If yes, rule 7, else, H = Hy.
6 Is lat D < 12.6°N? If yes, H = Hr, else, H = Hp.
7 Is lat H < 26.4°N? If yes, rule 8, else, H = Hp.
8 Is long D < 72.4°W? If yes, H = Hy, else, H = Hp.

a LDA (with equal prior probabilities) on the same
dataset. In this case, the in-sample error is 0.158, which
is more than double the error of the classification tree.
This result should not be generalized to mean that tree-
based regressions are always the best way to proceed.
In this particular case, where the possibility exists for
nonfunctional relationships between the independent
variables and the groups, discriminant analysis is not
the best choice. Indeed, we stress that the particular
choice of classification methodology is not critical to
the overall approach of an objective classification of
Atlantic basin hurricanes.

To assess the statistical significance of this result, we
employ a normal approximation on the cross-validated
accuracy proportion, as opposed to the best accuracy
that could be obtained by climatology alone. In this
case, there are 112 baroclinically influenced and 97
tropical-only storms, so a climatological classification
accuracy of 112/209 = 0.536 is the best that could be
achieved blindly. We then imploy the normal approx-
imation

1= a, — a
va. (1 —a.)/n |

where a, and q, are the accuracies of the algorithm and
climatology, respectively, and n = 209 is the number
of cases. Using this, a value z = 11.22 is obtained.
Since the algorithm iterated over 20 potential tree sizes,
we multiply the corresponding p value by 20 to correct
for selection bias. Doing so yields a p value of less than
10~*, indicating significant results. This lends credence
not only to the objective classification algorithm, but it
also supports the initial subjective stratification, since
largely independent datasets were used for the stratifi-
cation and for the algorithm.

Further, we find that 66 (or 32%) of the hurricanes
are classified as tropical only by simply applying rules
1 and 2 (type 1 hurricane), while 75 (or 36%) are
classified by rules 1 and 3 (type 2 hurricane). Thus,
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nearly 70% of all storms can be classified as either a
type 1 or a type 2 hurricane. Hurricanes Hugo of 1989
and Arlene of 1967 (with their development tracks
shown in Fig. 2) serve as examples of type 1 and type
2 storms, respectively. Additional rules are needed to
classify the remaining 30% of the hurricanes.

Table 3 is a list of the hurricanes that were misclas-
sified by PACT. We find that some of these storms
posed problems for the original classification. We ap-
ply the above rules to the 1994 hurricane season and
determine that, of the three Atlantic hurricanes, only
Chris reached hurricane strength devoid of any baro-
clinic influences. This is consistent with the subjective
interpretation of the 1994 season by Elsner et al.
(1994), but may not represent a consensus among the
researchers in this area. For example, it might be argued
that Hurricane Chris was aided in its early development
by the proximity of an upper-level low.

It is interesting to speculate on the physical impor-
tance of these results. The fact that a judicious screen-
ing of storms by an individual can be reduced to a rel-
atively few objective rules, with relatively high degree
of accuracy, suggests some underlying simplicity to the
apparent complexity of hurricane development. We
speculate that perhaps the role of midlatitude westerlies
may be more important in differentiating various phys-
ical mechanisms of hurricane development than has
been previously considered. For example, the late sea-
son hurricane activity is probably a consequence of the
seasonal return of high-amplitude midlatitude baro-
clinic disturbances superimposed over the still warm
waters of the Atlantic.

The rules generated above will guide the classifica-
tion of future hurricanes but may not be useful for
grouping storms prior to 1951, since in general, de-
pression data are not available for these earlier storms.
Therefore, we develop another classification tree using

TABLE 3. Hurricanes misclassified by the eight-rule PACT.

Hess et al.
Year Name (1995) Objective
1951 How HB HT
1954 Carol Hr Hg
1954 Alice2 Hp Hp
1955 Gladys Hr Hp
1962 Daisy Hp Hr
1965 Betsy Hp Hy
1966 Celia Hp Hy
1968 Gladys Hr Hp
1970 Alma Hp Hy
1976 Holly Hp Hy
1979 Gloria Hy Hy
1982 Debby Hp Hy
1985 Bob Hy Hjp
1988 Debby Hr Hp
1989 Chantal Hy Hy
1992 Andrew Hp Hy




2886

50

Tropical only
Baroclinically influenced

w B
(=] o
T T

t

Frequency Count
[\)
[=]

L

S 10 15 20 25 30 35 40 45 S50 55
Latitude of Initial Hurricane Strength

FiG. 4. Frequency of hurricanes as a function of latitude for trop-
ical-only and baroclinically influenced storms compiled over the pe-
riod 1886-1994. The years from 1950 onward were classified sub-
jectively, and the earlier years were classified using the rules similar
to those of Table 2.

only data after the cyclone reached tropical storm
strength (18 m s ™).

We use the same six independent variables on 257
hurricanes over the period 1950-94, with the exception
that initial depression data are replaced by initial trop-
ical storm data. The results are similar to the original
classification in that the PACT algorithm gives a clas-
sification tree with nine decision rules and 10 terminal
nodes. The resubstitution error is 0.074 (or 19 mis-
classified storms), and the cross-validated error is
0.097. Unlike the classification tree built from the de-
pression data, this tree contains a slight bias toward
tropical-only hurricanes. There does not appear to be
any time-dependent trend in the bias, however. The
most important independent (or predictor) variables in
order of importance are initial hurricane day, initial
hurricane latitude, and initial tropical storm latitude.
These rules are used to classify hurricanes prior to
1950.

5. Climatology

We apply the decision rules to the historical best
track data over the period 1886—1949. There were a
total of 279 hurricanes in this period. Because a few of
these storms were not detected until hurricane strength,
the initial storm and initial hurricane data are identical
(e.g., the hurricane of 1890). While colinearity (cor-
relation among the independent variables) is not a
problem with classification trees as it is with other sta-
tistical models, the missing data will add a bit of un-
certainty to the decision of grouping these particular
hurricanes.

Over this period we find 217 tropical-only hurri-
canes, or 78% of the total. The percentage of tropical-
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only hurricanes is considerably greater in this period
than in the 1950-94 period. Combining the classifi-
cations from the two periods we have a total of 342
tropical-only hurricanes, or 64% of the total number.

The average latitude at which a tropical-only storm
initially becomes a hurricane is 18.8°N, while the av-
erage longitude is 65.9°W. This compares to an average
latitude of 29.1°N and an average longitude of 69.1°W
for baroclinically influenced storms. Figure 4 shows the
distributions of the initial hurricane latitude for the two
groups of storms. Tropical-only hurricanes not only
tend to form at lower latitudes than baroclinically in-
fluenced storms, but also the distribution as a function
of latitude is skewed toward lower latitudes. This is in
contrast to baroclinically influenced hurricanes, which
have a symmetric distribution with respect to their lat-
itude of origin.

The seasonal variability of tropical-only and baro-
clinically influenced hurricanes is shown in Fig. 5. The
greatest concentration of hurricane activity occurs from
the middle of August through September. The baro-
clinically influenced season is longer, extending from
June to November, while the tropical-only season is
generally from August to October. In November, mid-
latitude disturbances become even more frequent over
the still relatively warm tropical Atlantic waters. Oc-
casionally, these disturbances initiate hurricane devel-
opment.

The secondary, postmaximum peak in total Atlantic
hurricane activity during the middle of October has
been suggested by others (e.g., Cry and Haggard 1962;
Neumann et al. 1987; Landsea 1993), but there has yet
to be an explanation. Cry and Haggard (1962) state,
““An increase of both tropical storms and hurricane
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Fic. 5. Frequency of hurricanes as a function of day of the year
for tropical-only and baroclinically influenced storms compiled over
the period 1886—1994. The years from 1950 onward were classified
subjectively, and the earlier years were classified using the rules sim-

ilar to those of Table 2. Tick marks represent the middle of each
month.
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FIG. 6. Ratio of the number of tropical-only hurricanes to the total number in 5-year intervals
beginning with 1886 for the Atlantic basin (1886-1995). Tropical-only hurricanes were determined
subjectively from 1950 onward and objectively using rules similar to those in Table 2 for years
over the period 1886—1949. Tic marks correspond to every second pentad. Ratios greater than 0.5,
indicating more tropical-only hurricanes, are shown in () shading, and ratios less than 0.5, in-
dicating more baroclinically influenced hurricanes, are shown in () shading.

days in mid-October is followed by a sharp decline to
a low level of activity in the last part of October and
in November.’” Neumann et al. (1987) state, ‘‘A some-
what irregular decline in frequency occurs thereafter
[after mid-September], interrupted by a slight increase
in mid-October.”’ Here, we suggest that this secondary
peak is due to the relative maximum in baroclinically
influenced activity at this time of year.

Multiyear variations in tropical-only hurricane activ-
ity are examined by considering the ratio of the number
of tropical-only hurricanes to the total number of hur-
ricanes (Hy/H). This idea is not without precedent.
Simpson et al. (1968) were the first to catalog all syn-
optic-scale tropical disturbances each season. Herbert
and Frank (1973) added to these efforts by creating a
ratio of the baroclinic depressions to the total number
of depressions. A ratio of less than (.5 suggests a sea-
son with a ‘‘tropical’’ character, that is, more devel-
opments over the tropical belts. Ratios closer to one
signal increased baroclinic activity. Avila and Clark
(1989) revised this ratio by taking the total number of
tropical storms originating in Africa to the total number
to get a better assessment of seasonal tropical cyclone
activity. They subjectively separated ‘‘African’’ years
from ‘‘non-African’’ years in this fashion. If the ratio

is greater than or equal to 0.7, then it is an African year.
If it is less than or equal to 0.5, then it is a non-African
year.

For our study, it is believed that the ratio Hy/H is
more robust than the actual number of tropical-only
hurricanes against changes in hurricane-detection
methods over the past century of observations (see
Landsea 1993). This is because some early hurricanes
may have gone undetected, a situation not likely in the
most recent years. We recognize that a potential bias
may exist toward one type of storm or the other over
this time period. While the ratio may prove more robust
against inconsistent biases, it is impossible to determine
whether or not the pre-1950 hurricane record contains
a bias toward storm type. However, no evidence exists
to indicate that it is in fact biased. The link between
low-frequency variability of tropical-only hurricanes
and intense hurricane activity described below gives
some support to the conjecture that the ratio is not bi-
ased over this period.

Figure 6 shows the time series of this ratio using 5-
yr intervals beginning in 1886. The last interval in-
cludes hurricanes through 1995, The striking feature of
this graph is the abrupt change in ratios around 1960.
Between 1886 and 1960, tropical-only hurricanes dom-
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inated annual totals, averaging nearly three-quarters of
all storms. In stark contrast, over the past 30 years or
so baroclinically influenced hurricanes have accounted
for nearly 70% of the annual total. It is noted that this
change occurred during the reliable portion of the hur-
ricane record.

The above result is similar to the decrease in the
number of intense hurricanes noted by Gray and Land-
sea (1992) during the 1970s and 1980s compared with
the decades of the 1940s and 1950s. In fact, the findings
are probably related, since the empirically derived con-
ditional probability of designating a hurricane as trop-
ical only given that it reached intense hurricane
strength is 0.78. In addition, since 66% of all tropical-
only hurricanes become intense hurricanes, the de-
crease in intense hurricane activity associated with re-
cent prolonged drought conditions in western Africa
(Landsea 1993) might be used to partly explain the
decline in tropical-only activity. There may be other
factors, however, since the linear correlation between
the number of tropical-only hurricanes and the number
of baroclinically influenced hurricanes in these 5-year
intervals over the period is —0.47, which is statistically
significant at the 5% level.

We note that the rather sudden drop in the relative
number of tropical-only hurricanes occurred during the
period in which satellite information was beginning to
be routinely consulted. Thus, there is the possibility that
the change in ratio resulted from more and/or better
information about higher-latitude baroclinically influ-
enced development. For example, Avila and Clark
(1989) mention that organized clusters of convection
over the open ocean and some midlatitude frontal lows
may have been classified as tropical depressions during
the late 1960s. This indicates that there is the possibility
for data bias due to changes in the interpretation of the
available information.

6. Summary and conclusions

A useful way to consider the Atlantic hurricane sea-
son it to separate tropical-only from baroclinically in-
fluenced storms (Hess et al. 1995). Here, we develop
an objective classification procedure for grouping hur-
ricanes based on initial depression and initial hurricane
positions.

The grouping is done using a partially adaptive clas-
sification tree that provides a series of decision rules.
For this problem, a useful classification tree is found
with eight decision rules. We obtain a greater than 90%
accuracy in a cross-validation exercise. The results are
significant at ¢ < 0.0001. In order to group storms
before 1950, a similar classification tree was considered
by replacing depression data with initial tropical storm
data. Applying these rules to storms over the period
1886—-1949 and combining the grouping over the
1950-94 period provides useful climatological infor-
mation.
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The two groups of hurricanes differ most in their
latitude of development. On average, tropical-only hur-
ricanes form near 19°N latitude, compared with 29°N
for baroclinicaily influenced storms. Seasonal variabil-
ity is also different with tropical-only storms confined
primarly to the months of August through October,
compared with June through November for baroclini-
cally influenced storms. The secondary maximum ob-
served in the seasonal number of hurricanes near mid-
October is partly a consequence of baroclinically influ-
enced hurricane activity. There has been a marked
decrease in the relative number of tropical-only hurri-
canes since 1960. This is partly explained by recent
droughts in western Africa, resulting in fewer hurri-
canes originating from waves passing over or near
Cape Verde.

This study can be extended by considering the above
dichotomy of storm type to include tropical storms.
Further, it might be possible to subdivide the baroclin-
ically influenced group into the categories of baroclin-
ically initiated and hybrid storms. Work in these direc-
tions is currently in progress. In closing, we restate the
utility of considering hurricane activity in the Atlantic
as the sum of tropical-only and baroclinically influ-
enced storms to better understand seasonal and inter-
annual variability of the Atlantic tropical cyclone cli-
mate.
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