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Abstract

This paper estimates regional tornado risk from records of past events using statistical mod-

els. First, a spatial model is fit to the tornado counts aggregated in counties with terms that

control for changes in observational practices over time. Results provide a long-term view of

risk that delineates the main tornado corridors in the United States where the expected

annual rate exceeds two tornadoes per 10,000 square km. A few counties in the Texas Pan-

handle and central Kansas have annual rates that exceed four tornadoes per 10,000 square

km. Refitting the model after removing the least damaging tornadoes from the data (EF0)

produces a similar map but with the greatest tornado risk shifted south and eastward. Sec-

ond, a space-time model is fit to the counts aggregated in raster cells with terms that control

for changes in climate factors. Results provide a short-term view of risk. The short-term view

identifies a shift of tornado activity away from the Ohio Valley under El Niño conditions and

away from the Southeast under positive North Atlantic oscillation conditions. The combined

predictor effects on the local rates is quantified by fitting the model after leaving out the year

to be predicted from the data. The models provide state-of-the-art views of tornado risk that

can be used by government agencies, the insurance industry, and the general public.

Introduction

Seasonal climate forecasts are issued routinely. Each spring, for example, weather agencies in

nations across the world make predictions for how hot and dry the summer is likely to be. And

predictions for hurricane activity along the coast are typically accurate enough to warrant

attention by the property insurance industry. Yet there remains no regularly issued forecasts of

tornado activity months in advance despite demonstrated useful skill (accuracy above random

guess) at predicting tornado activity prior to the start of the season [1] and initial forays into

public dissemination of a forecast system [2]. The absence of routine seasonal tornado fore-

casts is due to large gaps in the understanding of how climate affects severe weather and to the

limited methods to forecast activity on this time scale.

Dynamical models are used as guidance to make seasonal forecasts of temperature and pre-

cipitation anomalies but tornadoes are too small to be resolved in them. Dynamical guidance

on environmental conditions favorable for tornadoes is available out to about two weeks [3]

though there is a high false alarm rate on the predictions with increasing lead time. The
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necessary conditions are not sufficient to completely distinguish between days with and with-

out tornadoes. An alternative approach is to fit statistical models to historical observed data.

Climate patterns related to active and inactive tornado seasons provide information to make

predictions but population growth and changes to procedures for rating tornadoes result in a

heterogeneous database.

Various methods for dealing with artifacts in the tornado data have been proposed [4–6]

with most procedures assuming a uniform region of activity and estimating occurrence rates

within a subset of the region likely to be most accurate. For example, tornado reports are often

aggregated using kernel smoothing [7–9]. The resulting spatial density maps show regions of

higher and lower tornado frequency which is useful for exploratory analysis and hypothesis

generation. However, correctly interpreting the patterns is a problem since there is no control

for environmental factors. Another drawback is the assumption (implicit) that tornadoes

occur randomly (not clustered). This is not generally the case as a single thunderstorm can

spawn a family of tornadoes within a relatively compact area [10]. Also, tornado reports tend

to be more numerous near cities compared to rural areas confounding attempts to properly

assess the risk over large regions [11]. Improvements in observing practices tend to result in

more tornado reports, especially reports of weak tornadoes [12, 13] and ones occurring over

remote areas. Finally, natural climate variations make some seasons more active than others.

For instance, variations in sea-surface temperature and atmospheric convection in the tropical

Pacific associated with the El Niño/Southern Oscillation (ENSO) modulate global weather and

climate patterns including the threat of tornadoes [2, 14–17]. In short, a statistical model capa-

ble of controlling for these various factors and data artifacts provides a convenient way to

‘smooth’ the tornado risk.

The purpose of this paper is to describe a strategy for the development of a comprehensive

seasonal tornado risk assessment system. It follows the methodology of [18] but significantly

expands the scope with a larger spatial domain, more predictors, and more complete validation.

Part one fits a climatology model to data aggregated by county in states across the Midwest,

Plains, and Southeast (long-term view of risk). The model uses annual population to control

for changes in observational practices over time. Results quantify a long-term view of risk inde-

pendent of climate variability. Part two fits a conditional climatology model to data aggregated

in grid cells that predicts how the rates should be adjusted given current (or projected) climate

conditions. The model controls for changes in observational practices over time using a trend

term. Results quantify a short-term view of risk that depends on current climate conditions. A

discussion of the model results and the potential utility of the models follows.

Materials and Methods

Data

A key variable in the long-term model is annual population by county that serves as a proxy

for changes in observational practices. These values are available as archives by the U.S. Census

Bureau and available from www.nber.org/data/census-intercensal-county-population.html.

The latest cleaned population values are available for 2012. Population density is computed by

dividing the population by county area and expressing the values in persons per square kilo-

meters. On average, the greater the population density the greater the chance that a tornado

gets in the record. Annual population values vary over space and time but we set the popula-

tion density for each county to be equal to its maximum density over the 46-year period. Other

proxies for changes in observational practices are possible (see [19]).

The U.S. Census Bureau map boundaries are available from www.census.gov/geo/maps-

data/data/cbf/cbf_counties.html. Here the 5m = 1:5,000,000 scale is used. State boundaries are
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extracted using the state Federal Information Processing Standard (FIPS). The set of 24 contig-

uous states including Wyoming, Colorado, New Mexico, North and South Dakota, Nebraska,

Kansas, Oklahoma, Texas, Louisiana, Arkansas, Missouri, Iowa, Minnesota, Wisconsin, Michi-

gan, Illinois, Indiana, Ohio, Kentucky, Tennessee, Georgian, Alabama, and Mississippi define

the study area. There are 2168 counties across the two dozen states covering 7.6 million square

kilometers. Combining the population data with the map boundaries the county-level popula-

tion for 2012 is mapped in Fig 1. A north-south region of low population density extends

across the western portions of the high Plains.

The tornado data are from NOAA’s Storm Prediction Center (SPC) and available from

www.spc.noaa.gov/gis/svrgis/zipped/tornado.zip. The SPC maintains a comprehensive and

up-to-date tornado database. Records extend back to 1950 and up through 2015 and include

occurrence time, location, magnitude, track length and width, fatalities, and injuries for torna-

does in the United States. The version of the SPC database used in this study is in shapefile

Fig 1. County population in 2012.

doi:10.1371/journal.pone.0166895.g001
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format with each tornado represented as a straight-line track in a Lambert conformal conic

(LCC) projection centered on 96˚ W longitude and parallels at 33˚ and 45˚ N latitudes. The

native coordinates are transformed to a Mercator projection. The data are quality controlled

for errors prior to inclusion in the database.

Tornado tracks are buffered to create damage-path polygons. The buffer is one half the

value of the width variable specified in the attribute table. A flat cap on the buffer is used so the

damage path is the same length as the track. The polygon paths are laid on top of the domain

and a vector is returned indicating either NA (no portion of the damage path is inside the

study area) or county numbers indicating which counties where affected. Duplicate paths

(1.03% of all paths) are removed by checking for exact matches in width, length, date, time,

and start location. For the long-term view all tornadoes starting with 1970 are used to create a

46-year climatology. There are a total of 39,015 tornadoes over this period and region. The

annual number of tornadoes are plotted in Fig 2. There is an upward trend in the annual

counts that appears to have leveled out around 2005. A trend term is included in the models.

Paths are laid over the county boundaries to get a per-county tornado count. The result is a

list with the number of items equal to the number of counties. Each item contains a subset of

the track attribute table. Padding with zeros is needed for the 19 counties without tornadoes

(less than 1% of all counties). Then for each county the number of tornadoes and tornado days

are tabulated and plotted (Fig 3). The maps show a tendency for larger counties to have more

Fig 2. Annual number of tornadoes (1970–2015) over the states used in the long-term view model. The blue line is a 2nd-order local polynomial

regression smoother (span = .75) and the gray band is the 95% uncertainty range on the smoother.

doi:10.1371/journal.pone.0166895.g002
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tornadoes and more tornado days. Leading the list is Weld County, Colorado with a total of

219 tornado reports falling on 137 tornado days but spread over more than 18,000 square km.

Next is Harris County, Texas with a total of 192 tornadoes falling on 124 days spread over

more than 6,000 square km. County areas are included in the model (see next subsection) as a

part of the exposure term.

A short-term view quantifies how much the tornado risk changes with a unit change in the

climate variable (predictor). If the influence varies regionally then quantification is done spa-

tially. To manage spatial variation, the short-term view model uses a raster of grid cells. The

raster has uniform size and shape contiguous cells making computations and comparisons eas-

ier. Annual tornado occurrences are counted in two degree cells based on track intersections

(Fig 4). To simplify the overlay operation straight-line tracks are used instead of paths. The

result is a space-time data set with cell area as a constant-time attribute and tornado count as a

variable-time attribute. The study area extends from eastern Colorado to western Virginia and

from the Mexican Gulf coast to southern Minnesota. The period of record runs from 1954 to

2015 for a total of 48,200 tornadoes representing 81.7% of all tornadoes and 91.6% of all violent

tornadoes (EF4+). Data earlier than 1970 are included in the short-term view since the model

has a trend term for the increasing probability of tornado detection with increasing moderni-

zation. It is clear that at the cell level there is large variability in counts from one year to the

next. Variability across space is also large in some years.

Key variables in the short-term view model are the climate predictors. Predictors are chosen

based on literature research. They include indexes for ENSO and for the North Atlantic Oscil-

lation (NAO) and sea-surface temperatures (SST) from the Gulf of Alaska and Western

Fig 3. Number of tornadoes 1970–2015 (left) and number of days with at least one tornado.

doi:10.1371/journal.pone.0166895.g003
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Caribbean Sea. The ENSO index, in units of standard deviation, is the bi-variate ENSO time

series averaged from March through May. The monthly series combines a standardized South-

ern Oscillation Index with a standardized Niño3.4 SST series computed from the Hadley Cen-

tre’s data [20]. The monthly values from March through May are averaged to obtain the index.

Fig 4. Annual tornado counts over the period 2000–2015 in two degree raster cells. A count is added to a cell if a

tornado track intersects it.

doi:10.1371/journal.pone.0166895.g004
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Monthly NAO values, in units of standard deviation, are constructed from a rotated principal

component analysis of the 500 hPa heights across the Northern Hemisphere. Higher than aver-

age heights over the subtropical Atlantic combined with lower than average heights in the

vicinity of Iceland result in a strongly positive values of the NAO. Details of the procedure are

given in [21]. Monthly values from April through June are averaged to obtain the NAO index.

The ENSO and NAO indices are obtained from the Climate Prediction Center.

The SST regions are selected based on [1] showing a tendency for a combination of colder

than average ocean waters in the Gulf of Alaska and warmer than average ocean waters in the

Western Caribbean Sea to favor tornado activity across the central United States during spring.

The monthly SST values are spatially averaged from the NCEP/NCAR reanalysis grids [22].

The Gulf of Alaska (GAK) region is bounded by 60 and 50.4˚ N latitudes and 136 and 153.6˚ W

longitudes. Following [1] the GAK is the spatial average over the region for the month of April.

The Western Caribbean Sea (WCA) region is bounded by 25 and 15˚ N latitudes and 70 and

90˚ W longitudes. The WCA is the spatial average over the region for the month of February.

The indexes and SST data are obtained from the Physical Science Division of the Earth System

Research Laboratory. Time series plots (Fig 5) of the four predictors used in the short-term

view model indicate year-to-year variation but no significant upward or downward trends.

Models

Raw counts are problematic for directly assessing tornado rates because counties vary in size

and population. To control for this a statistical model is fit to the counts. The long-term view

model includes population density as a fixed effect. To account for improvements in the proce-

dures to rank tornadoes by the amount of damage, the calendar year and an interaction term

of year with population are included. Mathematically, the number of tornadoes in each county

s (Ts) is assumed to be described by a negative binomial distribution with parameters probabil-

ity p and size r [1]. If X is a random sample from this distribution, then the probability that X =

k is Pðkjr; pÞ ¼ kþr� 1

k

� �
ð1 � pÞrpk, for k 2 0, . . .,1, p 2 (0, 1) and r> 0. This relates the proba-

bility of observing k successes before the r-th failure of a series of independent events with

probability of success equal to p. The distribution is generalized by allowing r to be any positive

real number and it arises from a Poisson distribution whose rate parameter can be described

by a gamma distribution [23].

The negative binomial distribution is re-formulated using the mean m ¼ r p
1� p and the size r.

This separates the mean from the dispersion parameter. The mean μs is linked to a linear com-

bination of the predictors and random terms, νs through the exponential function and the area

of the cell, As (exposure). The dispersion is modeled with a scaled size parameter n where n =

rs/As giving a dispersion of 1/ps = 1 + μs/n = 1 + exp(vs)/n that depends only on the tornado

rate and n. More concisely the model is:

Tsjms; rs � NegBinðms; rsÞ ð1Þ

ms ¼ As exp ðnsÞ ð2Þ

ns ¼ b0 þ b1 lpds þ b2 ðt � t0Þ þ b3 lpdsðt � t0Þ þ us þ vt ð3Þ

rs ¼ As n ð4Þ

where NegBin(μs, rs) indicates that the conditional tornado counts (Ts|μs, rs) are described by

negative binomial distributions with mean μs and size rs, lpds represents the base two logarithm

of the maximum population density over the 46-year period for each county, and t0 is the base
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year set to 1991 (middle year of the record). The spatially correlated random term us follows

an intrinsic Besag formula with a sum-to-zero constraint [24].

uijfuj;j6¼i; tg � N
1

mi

X

i�j

uj;
1

mit

 !

; ð5Þ

where N is the normal distribution with mean 1/mi � ∑i*j uj and variance 1/mi � 1/τ where mi

is the number of neighbors of cell i and τ is the precision; i * j indicates cells i and j are neigh-

bors. Neighboring cells are determined by contiguity (queen’s rule–eight nearest cells). The

annual uncorrelated random term, vt, is modeled as a sequence of normally distributed ran-

dom variables, with mean zero and variance 1/τ0. The prior on the spatial random term is sta-

tistically independent from the annual random term.

The short-term view model extends the long-term view model. Subscripts on parameters

and variables indicate a space (s) and a time (t) component. Mathematically, the raw tornado

Fig 5. Time series (1954–2015) of the four predictors used in the short-term view model. The blue line is a 2nd-order local polynomial regression

smoother (span = .75) and the gray band is the 95% uncertainty range on the smoother.

doi:10.1371/journal.pone.0166895.g005
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count in grid cell s for year t is given as:

Ts;tjms;t; rs;t � NegBinðms;t; rs;tÞ ð6Þ

ms;t ¼ As exp ðns;tÞ ð7Þ

ns;t ¼ b1 ðt � t0Þ þ b2 IDs þ b3 GAKt þ b4;s ENSOt

þ b5;s NAOt þ b6;s WCAt

ð8Þ

rs;t ¼ As n ð9Þ

where again the conditional tornado count in each cell is described by a negative binomial dis-

tribution with mean μs,t and size rs,t.

The annual rate in each cell μs,t is linked to a linear combination of the predictors (νs,t)

through the exponential function and the area of the cell, As. The predictors include the GAK

as a spatially-uniform effect and ENSO, NAO, and the WCA as spatially-varying effects. The

spatially-varying effects have an intrinsic Besag formula (Eq 5). Each cell is allowed to have

unique variability through the ID term. The cell area times the number of years is the square-

meter-years exposed to tornadoes and is normalized to have a mean of one over the domain.

Gaussian priors with low precision are assigned to the β’s. To complete the models, the

scaled size (n) is assigned a log-gamma prior and the precision parameters (τ and τ0) are

assigned a log-Gaussian prior [23]. Application of Bayes rule using the method of integrated

nested Laplace approximation (INLA) [25, 26] results in posterior densities for the model

parameters.

Results

Long-Term View

Climatology. By specifying a ‘future’ year (here 2016) the long-term model predicts a dis-

tribution for the counts in each county. The mean value of the predictive distribution is the

expected annual occurrence rate conditional on the historical raw counts and the model. Val-

ues are standardized by dividing by county area and expressing them as a rate per 100 km

square region (Fig 6). This allows comparisons that are independent of county area. Note that

the average county area is approximately 3500 km2 so the per county rate in many cases is

smaller. The color ramp is on a logarithmic scale so that each level of color saturation indicates

a doubling of the occurrence rate.

As anticipated the broad-scale pattern matches the well-known tornado climatology. High-

est rates are found from the northern High Plains into the Mid South. Lowest rates are found

over the Rockies, the Rio Grande Valley, and the northern Great Lakes. Regional features

include lower rates over the Appalachian Mountains and a local minimum to the northeast of

the Ozark Mountains. Occurrence rates are consistently above two tornadoes per year across

the central and southern Great Plains. Rates drop off rapidly moving westward with values

generally less than one tornado every eight years across the Rockies. Rates drop off less rapidly

moving eastward with most regions exceeding one tornado per year with the exceptions of the

northern parts of Minnesota, Wisconsin, and Ohio, and over the Appalachian regions of Ohio

and Kentucky. Uncertainty about the predicted risk is metered by the standard deviation of

the predictive distribution (Fig 7). In general, areas with the largest standard errors are found

in regions with the highest rates. For most of the study domain the uncertainty amounts to less

Statistical Models for Tornado Climatology

PLOS ONE | DOI:10.1371/journal.pone.0166895 November 22, 2016 9 / 20



than.4 tornadoes per 100 square kilometers. Galveston County Texas has the largest uncer-

tainty in excess of .9 tornadoes per 100 square kilometers.

Model Quality. Quality of the model is assessed by the cross-validated log score, the cor-

relation between counts and expected rates, and the distribution of probability integral trans-

form values. The log score is equivalent to a mean square error with smaller values indicating

better prediction quality [27]. For all tornadoes the log score is .83 and the correlation between

observed counts and expected rates is +.24. While the value is small relative to a perfect corre-

lation the observations are counts while the predictions are rates so the upper limit is much

less than unity especially given the over-dispersed counts. The distribution of the modified

probability integral transform values is nearly uniform (Fig 8) indicating that the model fits

the data well and that there is no model bias.

A comparison of rates provides additional insight on the quality of the model. The raw rate

is the number of tornadoes in the county divided by the number of years and scaled to have

Fig 6. Long-term view. Expected annual tornado (EF0+) occurrence rates per 100 square kilometers. The data cover the

period from 1970–2015.

doi:10.1371/journal.pone.0166895.g006
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units of per 100 km squared area. The correlation between raw and expected rates is +.79. The

relationship is shown in Fig 9. Each point on the graph indicates a county. Note that the raw

rate does not control for trends or for the tendency of having fewer reports in less populated

counties. Divergence between the raw and expected rates results from the smoothing imposed

by the spatially correlated random term. Counties that have been exceptionally unlucky in

terms of tornado strikes relative to neighboring counties are smoothed toward the neighbor-

hood average. In the absence of evidence that a county has a unique risk relative to its neigh-

bors, this is how it should be. The influence of multiple tornadoes intersecting a county on a

given day is examined by refitting the model to tornado days rather than to tornado counts.

The fit results in a correlation between raw and expected tornado-day rates of +.83 indicating

a marginal improvement. The improvement is offset by the less intuitive interpretation of the

expected rates (tornadoes per area vs tornado days per area).

A similar model is fit to a subset of data consisting only of tornadoes rated EF1 and higher.

Just over two percent of the counties did not experience an EF1+ tornado over the period of

Fig 7. Variation in long-term rates. Standard deviation of tornado occurrence per 100 square kilometers.

doi:10.1371/journal.pone.0166895.g007
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record. With this subset of data the interaction term between population and year is not

included because it is not statistically significant. Occurrence rates are consistently above one

tornado every other year across most of the region (Fig 10). Highest rates occur across the mid

South and central Great Plains. Relative to the model fit on all the data, the log score is

improved at .58 but the correlation between observed counts and predicted rates drops to .20

as expected with many counties having no tornadoes in a given year. The distribution of the

modified probability integral transform values is again nearly uniform indicating that the

model fits the data well and that there is no problem with model bias. The correlation between

raw and predicted rates increases to +.84.

Short-Term View

Diagnostic Mode. Under the assumption of a stationary climate, long-term rates provide

a background climatology from which losses can be projected given additional models for

intensity and damages. The risk in a given year for a particular region however might be higher

(or lower) than the long-term rate depending on climate factors so it is valuable to have a

short-term view of the risk. The model described in Eqs (6–9) is fit to the annual tornado

counts in raster cells. The predictors are left in native units (standard deviations for the indices

and Kelvin for the temperatures) rather than normalized to have common variance. This facili-

tates physical interpretation of the effects but complicates a comparison of the relative

strengths of the effects.

The linear trend term indicates an average annual increase in tornadoes over the domain of

1.2% [(1.1, 1.3)%, 95% credible interval (CI)] consistent with improvements in observing prac-

tices. The posterior mean of the spatially-uniform GAK term (β3) on the short-term view

Fig 8. Distribution of the modified probability integral transform values. The values have a distribution that looks

uniform.

doi:10.1371/journal.pone.0166895.g008
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model indicates a 4.3% [(0.6, 7.9)%, 95% CI] reduction in tornadoes across the domain for

every one degree increase in SST in this region consistent with an earlier study over the Central

Plains ([1]). An earlier model found that a spatially varying GAK term did not improve the

model performance.

The posterior mean of the spatial-varying ENSO term (β4,s) answers the question: what is

the geographic pattern of the ENSO effect on tornadoes? Spatially the ENSO effect implies

fewer tornadoes over the Mid South and more across the High Plains during El Niño (Fig 11).

The pattern is consistent with earlier results using observed tornado days and environmental

conditions [2]. The reduction exceeds 15% over a large part of Tennessee and extends west-

ward to northeastern Texas and southeastern Kansas and northward into eastern Wisconsin

and Michigan. The enhancement in tornado activity across the Plains extends from western

Texas northward into western South Dakota. The statistical significance of the effect is esti-

mated by dividing the posterior mean by the posterior standard deviation (Fig 12). Areas of

Fig 9. Raw versus expected tornado rates. The best-fit regression line is shown in red.

doi:10.1371/journal.pone.0166895.g009
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the Mid South centered on Tennessee show the most statistical significance. Areas across the

central Great Plains that tend to get somewhat more tornadoes during El Niño have lower sig-

nificance levels (generally less than 1.5) consistent with earlier results [1].

The NAO effect is similar to the ENSO effect in magnitude although not as symmetric

(many more cells have negative values) with most of the Southeast extending into the Central

Plains indicating a decrease in tornado occurrence with a positive NAO index (Fig 13). Only

portions of West Texas indicate an increase in tornado frequency with a positive NAO. A posi-

tive NAO is marked by lower heights (or pressures) over Iceland and higher heights over the

subtropics. Not surprisingly the magnitude of the effect is most pronounced over Georgia and

South Carolina closest to the mean position of the subtropical high pressure area. The statisti-

cal significance of the NAO effect is confined to the Southeast. The WCA effect indicates a

general increase in the rate of tornado occurrence especially over the normally drier regions of

the central and northern Great Plains but the magnitude of the effect is considerably smaller

than the ENSO and NAO effects.

Fig 10. Expected annual tornado (EF1+) occurrence rates per 100 square kilometers.

doi:10.1371/journal.pone.0166895.g010
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Predictive Mode. A short-term view provides a hedge against the long-term rates when

climate signals are strong and the effects are aligned. Results from the short-term model run in

a diagnostic mode indicate how to adjust rates, on average, during El Niño holding the other

climate variables constant. To quantify the combined effect of the predictors the short-term

view model is run in predictive mode. To predict the rate adjustment for a particular year, the

cell counts for that year are left out of the model fit. The prediction is made using spring values

of the climate variables but the forecast target is the entire year. Because the approach is Bayes-

ian where all parameters and data are treated as random variables, the fitting procedure esti-

mates the cell rates for the year removed. As an example, early in 2011 a La Niña event was

occurring and the springtime NAO index was negative. Together with lower than normal Gulf

of Alaska SST the stage was set for an increased threat of tornadoes across the Southeast.

Removing the counts for 2011 the model predicts (hindcasts) increased tornado activity across

Fig 11. Short-term view. ENSO effect on tornadoes. Magnitude of the effect in units of percentage change in

tornado rate per standard deviation (s.d.) increase in the springtime (Mar–May) value of the bi-variate ENSO

index. Positive values indicate more tornadoes during El Niño.

doi:10.1371/journal.pone.0166895.g011
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a large part of the region east of 97˚ W longitude with much of Tennessee expecting rates to be

near 150% of the long-term rate (Fig 14). The straight-line tracks of all tornadoes during 2011

are shown as white lines clearly indicating the predicted preference for the activity across the

Southeast. A portion of the 2011 tornadoes occurred before the months used to create the pre-

dictor indexes so the map does not represent a true forecast.

Discussion and Conclusion

This paper demonstrates that regionally specific tornado risk assessments are possible with

spatial statistical models. The models are built from data in the historical tornado record. Mod-

ern fitting techniques are able to handle clustered and pathological records. The pathology

associated with fewer tornado reports in rural area is handled by using population density at

the county level. The models produce long- and short-term views of regional tornado risk. The

most important predictor examined is ENSO. This finding is consistent with earlier work on

this topic [2, 14, 17]. Accordingly, during spring in a La Niña phase of ENSO a strengthened

Inter-American Seas (IAS) low-level jet enhances the spread of moisture across the Southeast

Fig 12. Significance of the ENSO effect on tornadoes in units of standard deviation.

doi:10.1371/journal.pone.0166895.g012
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United States. Greater instability associated with more moisture is coupled with increased

shear from a strengthened upper-level jet setting the stage for more tornadoes. Whether or not

tornado activity actually increases above the long-term rate for a particular La Niña depends

on additional unknown and unpredictable factors but given these conditions over many cases

the data show statistical evidence for elevated risk.

When the climate exhibits a positive phase of the NAO the chance of tornadoes decreases

across a large part of the study area but especially over the Southeast. A positive NAO is associ-

ated with a strong subtropical high pressure zone over the North Atlantic that inhibits deep

convection across this part of the country, although more research is needed to connect this

statistical result with a physical understanding. The Gulf of Alaska SST term indicates fewer

tornadoes with a warmer ocean and the Western Caribbean Sea SST term indicates more tor-

nadoes with a warmer ocean consistent with earlier research [1], although the size of this effect

is at least an order of magnitude smaller than the size of the ENSO effect. This earlier work

also found no statistically significant relationship between the frequency of tornadoes over the

central Great Plains and either ENSO or the NAO; a result that is consistent with the weak (sta-

tistically insignificant) signals the present model shows for these two factors over this region.

For the short-term view to be used to make an actual prediction, a forecast of the relevant

predictors must be made before the year begins. Seasonal forecasts of mean sea-level pressures

and near-surface air temperatures with lead times of up to six months are routinely issued by

Fig 13. NAO and WCA effect on tornadoes. (A) Magnitude of the NAO effect in units of percentage change in tornado rate per s.d. increase in the

springtime (Apr–Jun) value of the NAO index. Negative values indicate fewer tornadoes with a positive NAO. (B) Magnitude of the WCA effect in units of

percentage change in tornado rate per ˚C increase in February SST in the Western Caribbean Sea.

doi:10.1371/journal.pone.0166895.g013
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the European Centre for Medium Range Weather Forecasting based on a global coupled

ocean-atmosphere general circulation model to calculate the evolution of the ocean and atmo-

sphere. The output from a post-processing of the raw numerical output can be used to create

the relevant predictors.

The long-term rates can be used by property insurance companies to set policy rates and by

emergency managers to allocate resources. The short-term rate adjustments can be used by

reinsurance companies and hedge funds looking for ways to adjust a risk portfolio. Future

work will focus on fitting the models to the historical database of Grazulis [28]. The additional

data will enhance the precision on the long-term rate estimates and will better define the influ-

ence climate predictors have on the short-term rates. For example, population density might

not be the best way to handle the under-reporting bias in the tornado records and additional

variables like distance-to-nearest city [11] and distance-to-nearest roadway might improve the

model. Finally, since the predictors in the short-term view model were based on previous stud-

ies, future work might focus on a more comprehensive examination of other climate variables.

Fig 14. Hindcast of the 2011 tornado year. The straight-line tracks of all tornadoes during that year are shown in white.

doi:10.1371/journal.pone.0166895.g014
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The code for the long-term view model is available at rpubs.com/jelsner/tornadoRisk_

longTermView and can be modified to estimate risk in other tornado-prone states and

regions. The code for the short-term view model is available at rpubs.com/jelsner/

tornadoRisk_shortTermView.
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