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ABSTRACT

A hierarchical Bayesian strategy for modeling annual U.S. hurricane counts from the period 1851–2000 is
illustrated. The approach is based on a separation of the reliable twentieth-century records from the less precise
nineteenth-century records and makes use of Poisson regression. The work extends a recent climatological
analysis of U.S. hurricanes by including predictors (covariates) in the form of indices for the El Niño–Southern
Oscillation (ENSO) and the North Atlantic Oscillation (NAO). Model integration is achieved through a Markov
chain Monte Carlo algorithm. A Bayesian strategy that uses only hurricane counts from the twentieth century
together with noninformative priors compares favorably to a traditional (frequentist) approach and confirms a
statistical relationship between climate patterns and coastal hurricane activity. Coinciding La Niña and negative
NAO conditions significantly increase the probability of a U.S. hurricane. Hurricane counts from the nineteenth
century are bootstrapped to obtain informative priors on the model parameters. The earlier records, though less
reliable, allow for a more precise description of U.S. hurricane activity. This translates to a greater certainty in
the authors’ belief about the effects of ENSO and NAO on coastal hurricane activity. Similar conclusions are
drawn when annual U.S. hurricane counts are disaggregated into regional counts. Contingent on the availability
of values for the covariates, the models can be used to make predictive inferences about the hurricane season.

1. Introduction

Coastal hurricanes are a serious social and economic
concern to the United States. Strong winds, heavy rain-
fall, and high storm surge kill people and destroy prop-
erty. Hurricane destruction rivals that from earthquakes.
In Florida alone, Hurricane Andrew’s strike in 1992
caused more than $30 billion in direct economic losses.
Hurricane accounts, even if incomplete, provide clues
about future frequency and intensity that go beyond the
specificity and lead time of climate prediction models.
These data are important for land-use planning, emer-
gency management, hazard mitigation, and
(re)insurance contracts.

Empirical and statistical research (Goldenberg et al.
2001; Elsner et al. 1999, 2000a; Gray et al. 1992) iden-
tify factors that contribute to conditions favorable for
Atlantic hurricanes leading to prediction models for sea-
sonal activity (Gray et al. 1992; Hess et al. 1995). Re-
search shows that climate factors can influence hurri-
cane frequency differentially depending on location. El
Niño’s effect on the frequency of hurricanes in the deep
Tropics is significant, but its effect on the number of
hurricanes over the subtropics is small. Additional fac-
tors help explain local variations in hurricane activity
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(Lehmiller et al. 1997). In fact, the North Atlantic Os-
cillation (NAO) appears to play a significant role in
modulating coastal hurricane activity (Elsner 2003; Els-
ner et al. 2001; Jagger et al. 2001; Murnane et al. 2000).

Insights into regional hurricane activity have yet to
be successfully exploited in seasonal landfall models.
One reason for this is the limited record length. Reliable
annual counts of U.S. hurricanes date back only about
100 years. Because regional hurricane probabilities are
quite small, longer records are needed to accurately as-
sess risk. A way around this limitation is to use records
that are less reliable. Elsner and Bossak (2001, hereafter
EB01) show how to include incomplete records into a
climatological analysis of U.S. hurricane activity. Their
approach is Bayesian. Here we extend EB01 by taking
a Bayesian approach to regression modeling. This al-
lows us to add covariates (predictors) into the analysis
of hurricane activity.

The purpose of the present work is to describe a meth-
odological framework for statistical seasonal hurricane
modeling that makes use of less precise historical re-
cords. Hurricane statistics together with demographic
data indicate a greater uncertainty in nineteenth century
landfall records. Yet, as demonstrated in EB01, a sharp
decision to reject these earlier observations is wasteful.
Specifically, the problem is how to statistically model
future coastal hurricane activity when it is known that
the count data from the early years are incomplete. Here
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we present a way to solve this problem using Bayesian
methodology based on Markov chain Monte Carlo
(MCMC) simulation. The methodology is general and
incorporates the analysis of EB01 as a special case.

There is now abundant statistical literature on hier-
archical Bayesian models. A good place to start is Gilks
et al. (1996), which brings together contributions from
leading authorities and which places emphasis on prac-
tice. Congdon (1993) provides an excellent overview of
Bayesian modeling through the illustration of a wide
range of examples, particularly from the health and so-
cial sciences. Only more recently has this approach been
applied in climate studies. Wikle (2000) gives a gentle
introduction to hierarchical Bayesian modeling for at-
mospheric and oceanographic processes. Berliner et al.
(2000) shows how the hierarchical approach can be used
to forecast tropical Pacific sea surface temperatures by
combining physical understanding of the El Niño–
Southern Oscillation (ENSO) with statistical models.
Katz (2002) reviews how hierarchical Bayesian models
enable better uncertainty analysis in integrated assess-
ments of climate change issues. Wikle and Anderson
(2003) demonstrate how the climatological analysis of
tornado reports, complicated by reporting errors and
count data, can be performed within a hierarchical
Bayesian framework. Elsner et al. (2004) show how
Bayesian models can be used to detect change points
in hurricane activity.

The present experimental design is a comparison of
a Bayesian model with a traditional frequentist model.
The goal is to show the usefulness of the Bayesian ap-
proach in focusing beliefs we might harbor about the
factors that influence coastal hurricane activity from the
available information at hand. First the approach is ver-
ified by comparing a Bayesian model with its counter-
part from a likelihood approach using data from the
twentieth century only. The nineteenth century data are
then introduced into the Bayesian model. Results con-
firm the utility of the earlier records through greater
precision on the model parameters. The hierarchical
Bayesian approach provides a strategy for modeling hur-
ricane activity that makes use of available historical
information without assuming the records have identical
levels of accuracy.

We begin the paper with a discussion of the hurricane
counts and the covariates. In section 3 we explain the
general idea behind the MCMC approach to Bayesian
inference. In section 4 we discuss the Bayesian approach
to statistical modeling in the context of U.S. hurricane
activity. In section 5, we apply the Bayesian model to
annual counts of U.S. hurricanes and compare the results
with those generated using a classical likelihood ap-
proach. In section 6 we use the Bayesian model on
regional hurricane counts. In section 7 we demonstrate
how to make predictive inference within the Bayesian
framework. We summarize our results and provide a list
of conclusions in section 8.

2. Data

a. Hurricane counts

The North Atlantic Hurricane database (HURDAT or
best-track) is the most complete and reliable source of
North Atlantic hurricanes (Jarvinen et al. 1984). The
dataset consists of the six-hourly position and intensity
estimates of tropical cyclones back to 1886 (Neumann
et al. 1999). A hurricane is a tropical cyclone with max-
imum sustained (1-min) 10-m winds of 65 kt (33 m s21)
or greater. Hurricane landfall occurs when all or part of
the storm’s eyewall passes directly over the coast or
adjacent barrier islands. Since the eyewall extends out-
ward a radial distance of 50 km or more from the hur-
ricane center, landfall may occur even in the case where
the exact center of lowest pressure remains offshore. A
hurricane can make more than one landfall as Hurricane
Andrew did in striking southeast Florida and Louisiana.
For U.S. hurricanes we consider only whether the ob-
servations indicate that the cyclone struck the conti-
nental United States at least once at hurricane intensity.
The approximate length of the U.S. coastline affected
by hurricanes from the Atlantic is 6000 km. For regional
frequencies we consider multiple landfalls if they occur
in different regions. We do not consider hurricanes af-
fecting Hawaii, Puerto Rico, or the Virgin Islands.

Additional contributions to the knowledge of past
hurricanes were made by interpreting written accounts
of tropical cyclones from ship logs, newspapers, and
other nontraditional archives (Ludlum 1963; Fernández-
Partagás and Diaz 1996). These studies update and add
information about hurricane landfalls during the period
1851 through 1899. For instance, the New York Times’
reports of damage and casualties often contain enough
detail to reconstruct the location and intensity of a hur-
ricane at landfall. Arguably these sources of U.S. hur-
ricane information provide justification to extend the
U.S. hurricane record back to the preindustrial era (Els-
ner and Kara 1999; Elsner et al. 2000b). Recently, the
National Oceanic and Atmospheric Administration
(NOAA) embarked on a 3-yr hurricane reanalysis pro-
ject (Landsea et al. 2004). The motivation was, in part,
to reduce the level of uncertainty surrounding the his-
torical reports of hurricanes during the last half of the
nineteenth century. The hurricane-landfall phase of the
project was complete in July 2000. A concatenated da-
taset of hurricane landfall accounts from historical ar-
chives and modern direct measurements is used in the
present study. A comparison of the hurricane record in
50-yr intervals is presented in EB01.

In the present study it is assumed that the annual
counts of U.S. hurricanes are certain back to 1900, but
less so in the interval 1851–99. The justification for this
cutoff is based on an increased awareness of the vul-
nerability of the United States to hurricanes following
the Galveston hurricane tragedy of 1900. Using this
information, EB01 estimate the hurricane-rate distri-
bution, which is subsequently used in a climatological
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model (negative binomial distribution) of future activity.
Following Epstein (1985) they make use of the fact that
the gamma probability density function is the conjugate
prior density for the intensity (mean value) of the Pois-
son process l. The Poisson distribution is used to char-
acterize North Atlantic hurricane counts (Solow and
Moore 2000; Parisi and Lund 2000; Elsner and Kara
1999; Bove et al. 1998; Elsner and Schmertmann 1993)
and the log-linear Poisson model (McCullagh and Neld-
er 1989) is used to describe the influence of climate
variables on various aspects of North Atlantic hurricane
activity (Elsner and Bossak 2004; Elsner et al. 2001,
2002; Elsner and Schmertmann 1993).

A bootstrap procedure obtains a 90% credible interval
on the mean number of hurricanes during the nineteenth
century. The ratio of the upper to lower values of the
credible interval is equal to the ratio of the correspond-
ing upper to lower quantiles of the x 2 variable. The
‘‘effective’’ number of years available from the nine-
teenth century is equal to half the degrees of freedom
of this x2 distribution. Thus the uncertainty about the
exact hurricane counts during the earlier years is ex-
pressed as a distribution on the annual rainfall rate. Here
we would like to have covariate (predictor) information
linked to annual counts through a regression equation.
This motivates the present approach.

b. Covariates

A statistical relationship between ENSO and U.S.
hurricanes is well established (Bove et al. 1998; Elsner
et al. 1999; Elsner and Kara 1999; Jagger et al. 2001).
A relationship between the North Atlantic Oscillation
and U.S. hurricanes has more recently been identified
(Elsner et al. 2000a,b, 2001; Elsner and Bossak 2004).
Indices characterizing these two climate variables are
described later.

Tropical Pacific sea surface temperatures (SSTs) are
characterized by cold values (typically ,268C) in a nar-
row latitudinal band centered on the equator in the cen-
tral and eastern longitudes of the basin and warm values
(typically .278C) in the western equatorial Pacific and
extending north and eastward to Central America. These
features can be seen in the annual mean SST field as
well as in individual months. The region of equatorial
cold SSTs is commonly referred to as the cold tongue.
Large year-to-year fluctuations in tropical Pacific SSTs
are centered in the cold tongue region and along the
South American coast. The basin-scale equatorial fluc-
tuations in SSTs are associated with ENSO. Average
SST anomalies over 68N–68S, 1808–908W in the cold
tongue region are called the cold tongue index (CTI;
Deser and Wallace 1990). Large nonseasonal SST fluc-
tuations along the Peruvian coast are associated with El
Niño, which although significantly correlated with the
ENSO SST fluctuations, do not exhibit a one-to-one
correspondence with cold tongue SST anomalies (Deser
and Wallace 1987).

The SST data for 1854–1997 are from the Compre-
hensive Ocean–Atmosphere Data Set (COADS) and for
1998–2000 are from an empirical orthogonal function
(EOF) analysis. The COADS data include an enhanced
quality control, which incorporates a large number of
newly obtained observations before 1950. A SST cli-
matology is calculated from the COADS data for the
years 1950–79, weighted by the number of observa-
tions. The climatology is smoothed along latitude circles
with successive five- and three-point running means.
SST anomalies are calculated by subtracting from each
month of data the climatology for that calendar month.
The index is then calculated by taking the average of
the available observations in the cold tongue region.
For the COADS data, the contribution of individual 28
latitude–longitude regions is weighted by the number
of observations in that year, month, and region. For each
year and month, the global-mean SST anomaly is also
calculated, and subtracted from the CTI to remove the
change in SST measurement practices in 1942 (Folland
and Parker 1995) and the long-term trend in SST (Zhang
et al. 1997).

The index values for the years 1854–1997 were com-
puted in the following manner. SST anomalies were
calculated for each month and year by subtracting the
smoothed climatology from the COADS SST data. CTI
and global-mean SST values were calculated as the av-
erage anomaly in the two averaging regions, weighted
by the number of observations. The global-mean SST
was then subtracted from the CTI to remove the spurious
step jump in SST in December 1941. Index values for
the years beginning in 1998 were calculated in the same
manner but with the EOF-based SST. For the period of
common record, the CTI derived from the COADS and
EOF SST are correlated at 0.95, and the standard de-
viation of the COADS and EOF CTI values are 0.77
and 0.69, respectively. Values of CTI are obtained from
the Joint Institute for the Study of the Atmosphere and
the Oceans as monthly anomalies (base period: 1950–
79) in hundredths of a degree Celsius. These values are
strongly correlated with values from other ENSO SST
indices [e.g., Niño-3.4 (58N–58S, 1708–1208W) SSTs].
Since the peak of the Atlantic hurricane season runs
from August through October, a 3-month averaged (Au-
gust–October) CTI from the dataset is used in the pre-
sent study. Sixteen years have at least one of the 3
months missing, so no CTI average is calculated.

Instead proxy tree-ring data representing SSTs in the
equatorial Pacific Ocean are used to fill in the missing
values. Reconstruction of the ENSO variability for the
months of December through February each year based
on tree-ring data from northern Mexico and Texas. The
reconstruction uses factor scores from a principal com-
ponent analysis (PCA) of time t and selected t 2 1 and
t 1 1 lags of 14 tree-ring chronologies from northern
Mexico (Durango and Chihuahua) and the southwestern
United States (Arizona, Utah, and New Mexico) plus
the first two factor scores from a network of nine chro-
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FIG. 1. Regression model (dotted line) with 95% simultaneous con-
fidence bands (solid lines). An ordinary least squares regression is
used to model the Aug–Oct averaged SST anomaly over the CTI
region using tree-ring proxy as the lone covariate. The model is used
to fill in 16 missing CTI values.

TABLE 1. Predicted CTI values. Values are interpolated from a linear
regression on tree-ring proxy data. The standard errors (S.E.) of the
predicted values are also given.

Year Proxy

Predicted

CTI (8C) S.E. (8C)

1851
1852
1853
1854
1857

0.621
0.538

20.060
0.015
0.240

0.580
0.502

20.056
0.014
0.224

0.076
0.070
0.054
0.053
0.055

1860
1861
1862
1863
1864

0.241
20.296
20.415
20.446

0.252

0.225
20.276
20.387
20.416

0.235

0.055
0.063
0.070
0.073
0.056

1865
1866
1867
1868
1869
1873

0.555
0.357
0.189
0.869

20.199
0.301

0.518
0.333
0.177
0.811

20.186
0.281

0.071
0.060
0.053
0.094
0.059
0.057

TABLE 2. Summary statistics for the covariate (predictor) variables.
The units on the CTI index are 8C and the units on the NAOI are
standard deviation.

Statistic CTI NAOI

Min
1st quartile
Mean
Median

21.33
20.41

0.09
20.04

22.76
21.05
20.34
20.37

3d quartile
Max
S.D.
No. of yr

0.54
2.04
0.714

150

0.33
2.90
1.005

150

nologies in Oklahoma and Texas as independent vari-
ables. Chronologies are compiled from indices of tree
growth (early wood or total ring width) detrended to
remove biological effects (Cook et al. 1998). A linear
regression of the August–October averaged CTI on the
tree-ring index using data over the period 1855–1977
is shown in the Fig. 1. Regression diagnostics indicate
a statistically significant model with the tree-ring proxy
index explaining 45% of the variation in August–Oc-
tober CTI. The predicted values and their standard errors
for August–October averaged CTI are listed in Table 1.

Index values for the NAO (NAOI) are calculated from
sea level pressures at Gibraltar and at a station over
southwest Iceland (Jones et al. 1997), and are obtained
from the Climatic Research Unit. The values are first
averaged over the pre- and early hurricane season
months of May and June. These months are a compro-
mise between signal strength and timing relative to the
hurricane season. The signal-to-noise ratio in the NAO
is largest during the boreal winter and spring, whereas
the U.S. hurricane season begins in June (see Elsner et
al. 2001).

The August–October averaged CTI and the May–June
averaged NAOI are the two covariates (predictors) used
here to model annual hurricane rates. For reference, Ta-
ble 2 shows their summary statistics based on 150 yr
of data. The upper and lower quartile values of the CTI
are 0.548 and 20.418C, respectively. Years of above
(below) normal CTI correspond to El Niño (La Niña)
events. The upper and lower quartile values of the NAOI
are 0.32 and 21.05 standard deviation (S.D.), respec-
tively. Figure 2 shows their distributions and time series.
The correlation between the two indices is a negligible
0.021. The present work makes no attempt to model the
level of uncertainty inherent in the predictor values.
Next, as a prelude to the modeling strategy, we discuss
the general outline of the MCMC approach.

3. A Markov chain Monte Carlo approach

a. Bayesian inference

The MCMC approach is useful for Bayesian infer-
ence. Given a sample of data, what conclusions can be
made about the entire ‘‘population?’’ Inference about
the statistical model can be formalized as follows: Let
u be a population parameter, then statistical inference
amounts to a supposition about u on the basis of ob-
serving the data. We contend that a value of u which
gives a high probability to our data y is more likely than
one which assigns low probability to y. In essence, the
inferences are made by specifying a probability distri-
bution of y for a given value of u [the likelihood dis-
tribution, f (y | u)].

For Bayesian inference, u is treated as a random quan-
tity, and our judgements are based on p(u | y); a prob-
ability distribution of u for a given data y. The costs
are a need to specifying a prior probability distribution
p (u) representing our beliefs about the distribution of
u before observing the data, and the need to postulate
a particular family of parametric distributions. In the
Bayesian approach (Carlin and Louis 2000) we combine
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FIG. 2. Density plots and time series graphs of the two covariate (predictor) variables. The density plot
uses a normal kernel density smoother with a bandwidth that is 4 times the standard deviation of the values.
The correlation between annual values of CTI and NAOI is 10.021.

the likelihood distribution of the data given the param-
eter with the prior distribution using Bayes’ theorem:

f (y | u)p(u)
p(u | y) 5 . (1)

f (y | u)p(u) duE
Having observed y, Bayes’ theorem is used to determine
the distribution of u conditional on y. This is called the
posterior distribution of u, and is the subject of all
Bayesian inference. Any feature of the posterior distri-
bution is legitimate for inference including moments,
quantiles, and p values. These quantities can be ex-
pressed in terms of the posterior expectations of func-
tions of u. The posterior expectation of a function g(u) is

g(u)p(u) f (y | u) duE
E [g(u) | y] 5 . (2)

p(u) f (y | u) duE
Evaluation of the integrals in Eqs. (1) and (2) are a

source of practical difficulties, especially for complex
problems. Moreover in most cases, analytic evaluation
of the expected value of the posterior density is im-
possible. Numerical approximation methods can be dif-
ficult to employ so Monte Carlo integration is a popular
alternative.

Monte Carlo integration evaluates E[g(y)] by draw-
ing samples from a probability density. An asymptotic
approximation is given by

N

g(u )O i
i51E [g(u | y)] ø . (3)

N

Thus the population mean of g(y) is estimated by a
sample mean. The argument for Monte Carlo integration
goes as follows:

• Assume that the posterior is the stationary distribution
of some Markov chain.

• Regularity conditions of the chain, such as aperiodic-
ity and irreducibility, guarantee that starting from any
initial value the marginal distribution of the sampler
converges to a stationary distribution. If this distri-
bution is unique, it will be that of the posterior by
design.

• Having a process that generates samples from the pos-
terior guarantees that the same law of large numbers
that applies to samples from the posterior applies to
samples from the chain. However, it does not obey
the same central limit theorem since the samples are
correlated by design.

b. Gibbs sampler algorithm

A common MCMC integration is the ‘‘Gibbs sam-
pler.’’ Let u 5 (u1, u2, . . . , up)9 be a p-dimensional
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FIG. 3. Direct graph of the hierarchical Bayesian hurricane model.
Model quantities are represented as nodes (circles or squares) and
arrows between nodes indicate the direction of influence. Solid
(dashed) arrows imply a stochastic (logical) dependence. The model
starts with prior information for m and c representing the mean and
precision of the parameters b, respectively. Particular values for b
lead to a particular annual hurricane rate li which is stochastically
related to an annual count yi.

vector of parameters and let p(u | y) be its posterior dis-
tribution given the data y. Then the Gibbs sampler is
given as

1) Choose an arbitrary starting point u (0) 5 [ , ,(0) (0)u u1 2

. . . , ]9, and set i 5 0.(0)up

2) Generate u (i11) 5 [ , , . . . , ]9 as fol-(i11) (i11) (i11)u u u1 2 p

lows:

(i11) (i) (i)Generate u ; p[u | u , . . . , u , y];1 1 2 p

(i11) (i11) (i) (i)Generate u ; p[u | u , u , . . . , u , y];2 2 1 3 p

· · · · · · · · ·
(i11) (i11) (i11) (i11)Generate u ; p[u | u , u , . . . , u , y].p p 1 2 p21

3) Set i 5 i 1 1, and go to step 2.

In this way each component of u is visited in order
and a cycle through the scheme results in a sequence
of random vectors of length p (Chen et al. 2000). Note
that p[u1 | , . . . , , y] is the conditional probability( i) (i)u u2 p

distribution of u1 given the other parameters and the
data. The procedure is a type of stochastic relaxation
where the update from previous samples are used on
the current conditional. Under general conditions the
sequence of u values forms a Markov chain, and the
stationary distribution of the chain is the posterior dis-
tribution. Typically, the chain is run for a large number
of iterations until the output is stable (burn-in). A large
number of additional iterations are run, the output of
which is analyzed as if it were a sample from the pos-
terior distribution (Coles 2001; Carlin et al. 1992).

The Gibbs sampler is performed using the Bayesian
Analysis Using Gibbs Sampler (BUGS) software (Gilks
et al. 1994). BUGS assumes a Bayesian model in which
all parameters are treated as random variables. The mod-
el consists of a joint distribution over all unobserved
parameters (and missing data) and observed data. The
posterior distribution over the parameters is obtained by
conditioning on the data. BUGS is freely distributed and
available for use on various platforms.

4. A model of annual hurricane counts

a. Model specification

Here we discuss the hierarchical Bayesian approach
to statistical modeling in the context of U.S. hurricane
activity. We model the annual hurricane count {yi, i 5
1, . . . , N} conditioned on the state of ENSO and the
NAO using a generalized linear regression. A practical
first step is the construction of a directed graph (Spie-
gelhalter et al. 1996) that represents model quantities
as nodes, with arrows between nodes indicating their
directed influence. Nodes are followed in the direction
of the arrows. Figure 3 shows a directed graph illus-
trating the relationships in a model of U.S. hurricane
activity. The data yi are represented as a stochastic node
with link (solid arrow) indicating a stochastic depen-

dence on the Poisson parameter l i which is a logical
function (regression structure) of the stochastic param-
eter vector b 5 (b0, b1, b2, b3). The logical relationship
between li and b is represented by a dotted arrow. The
parameter vector b is specified by a multivariate normal
distribution (MVN) having a mean m and variance c21,
where c is the precision matrix. The model is hierar-
chical because the nodes are followed from the top
down. The model is expressed in equation form as

y ; Poisson(l )i i

log(l ) 5 b 1 b CTI 1 b NAOI 1 b CTI 3 NAOIi 0 1 2 3

21b ; MVN(m, c ). (4)

The regression structure includes terms involving the
CTI and NAOI. An interaction term (indicated by a
multiplication sign) is also included. The BUGS code
for the model is given in the appendix.
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FIG. 4. Values of the regression parameters for iterations 8001 through 12 000 of the Bayesian model. The first
8000 iterations are discarded as burn-in. The values form a Markov chain as explained in the text.

b. Prior specification

As mentioned we make the assumption that annual
counts of U.S. hurricanes are certain back to 1900, but
less so in the interval 1851–99. A decidedly greater
uncertainty surrounds the annual counts of hurricanes
during the nineteenth century. Thus we use the data from
the twentieth century for the likelihood function and
data from the nineteenth century for the prior. To specify
prior values for m and c we fit a Poisson regression to
the set of hurricane counts and covariate values from
the years 1851–99

(k) (k) (k)log(l ) 5 b 1 b CTI 1 b NAOIj 0 1 2 (5)
(k)1 b CTI 3 NAOI,3

where b (k) 5 [ , , , ] for k 5 1, . . . , M(k) (k) (k) (k)b b b b0 1 2 3

represents a bootstrap resampling (Efron and Tibsharini
1993). The resampling is done by choosing 49 yr at
random with replacement as a bootstrap sample. The
regression is run on the sample and regression coeffi-
cients saved. The process is repeated M times. Then

(k)b̃O
m 5 and (6)

M
T(k) (k) Tb b 2 mmO

21c 5 , (7)
M 2 1

where the sum is over all M bootstrap samples. Here

we choose M 5 1000 throughout. In this way we obtain
empirical distributions for m and c.

To ensure stability of the results we run the Gibbs
sampler for 12 000 updates and discard the first 8000
as burn-in. We use b 5 (0.5, 20.5, 0.2, 20.2) as initial
values. Length of burn-in depends on the initial values
and the rate of convergence, which is related to how
fast the Markov chain mixes. Developing rigorous cri-
teria for deciding chain length and burn-in requires a
detailed study of the convergence properties of the chain
(Jones and Hobert 2001) that goes beyond the scope of
the present work. The chains, represented by successive
updates to the model coefficients, are plotted in Fig. 4
after removal of the first 8000 iterations. Visual in-
spections of the chains indicate stationarity. The set of
stationary values is used for posterior inferences.

5. Entire coast

a. Noninformative prior

We begin by using annual counts of U.S. hurricanes as
the response variable. The counts are analyzed in EB01.
The Bayesian approach is verified by comparing regression
coefficients with those from a frequentist model. Here a
fair comparison is one in which only the reliable twentieth-
century records are used. We expect coefficients generated
from the Gibbs sampler to coincide with those from a
frequentist model. A noninformative prior is used in the
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TABLE 3. Model comparisons.

Parameter

Bayesian

Mean S.D.

Frequentist

Value S.E.

b0

b1

b2

b3

0.3527
20.3800
20.1912

0.1996

0.09058
0.12480
0.07784
0.10240

0.3673
20.3777
20.1885

0.1962

0.09094
0.12726
0.08205
0.10610

FIG. 5. Posterior distributions of the regression coefficients using a noninformative prior as part of the Bayesian
model of U.S. hurricane activity. The distributions are smoothed using a normal kernel density estimator with a
bandwidth of 0.17. The actual values are plotted along the y 5 0 line. The dotted line is the zero reference line. (a)
Intercept term, (b) ENSO term, (c) NAO term, and (d) interaction term.

Bayesian model to ensure only the twentieth century hur-
ricane counts are included. Inflating the variance matrix
of the bootstrap samples by a factor of 100 creates a suit-
able noninformative (nearly uniform) prior. With a value
of 100, the prior probability for 99.95% of the bootstrap
samples varies by less than 0.25%.

Table 3 gives statistics of the regression coefficients
from the Bayesian and frequentist approaches. Under the
Bayesian strategy, model coefficients are random variables
with mean and standard deviation computed from the Mar-
kov chains. Under the frequentist approach, model coef-
ficients are maximum likelihood estimates (MLE) with a
corresponding standard error. Average Bayesian coeffi-
cient values compare favorably to the MLE and the stan-
dard deviations match the standard errors. Both models
indicate the importance of ENSO and the NAO separately
and as an interaction term. For the Bayesian model this

is clear from density plots of the posterior distributions
(Fig. 5). The distributions are plotted using smoothed his-
tograms. Smoothing is done using a normal kernel with
bandwidth of 0.17. The choice of bandwidth is a com-
promise between smoothing enough to remove insignifi-
cant bumps but not smoothing too much to hide real peaks
(Venables and Ripley 1999). Actual values are plotted as
points on the y 5 0 line and the x 5 0 line is dotted. Axes
scales are fixed to aid visual comparisons.

The influence of ENSO on annual U.S. hurricane ac-
tivity is indicated by the value of the CTI coefficient
b1. An increase in CTI (warmer equatorial Pacific SSTs)
is associated with a K-fold change in the annual mean
rate of U.S. hurricanes, where K 5 exp(b1). The pos-
terior density of b1 is centered on the value of 20.38,
so an increase of 18C is associated with a 0.68-fold
change in the mean hurricane rate (32% decrease). The
posterior distribution of b1 indicates a model that in-
cludes ENSO is more likely than a model that ignores
it. Moreover it is quite unlikely that b1 is greater than
zero. Although this is analogous to the frequentist claim
that b1 is significant, the Bayesian approach assumes all
models are false but some are more useful.

b. Bootstrap prior
The ability to include additional data that are less

precise into the model is the strength of the Bayesian
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TABLE 4. Model statistics for annual U.S. hurricane activity.

Parameter Mean S.D. 2.5% Median 97.5%

Noninformative priors
b0

b1

b2

b3

0.3527
20.3800
20.1912

0.1996

0.0906
0.1248
0.0778
0.1024

0.1695
20.6288
20.3510
20.0098

0.3525
20.3806
20.1894

0.2009

0.5214
20.1543
20.0438

0.3956

Bootstrap priors
b0

b1

b2

b3

0.4247
20.2735
20.2098

0.1647

0.0739
0.0989
0.0652
0.0864

0.2837
20.4716
20.3390
20.0062

0.4268
20.2754
20.2122

0.1652

0.5694
20.0812
20.0738

0.3375

FIG. 6. Posterior distributions of the regression coefficients using the bootstrap (solid) and noninformative (dashed)
priors as part of the Bayesian model of U.S. hurricane activity. (a) Intercept term, (b) ENSO term, (c) NAO term, and
(d) interaction term.

approach. Here additional data come from the nine-
teenth-century records and are incorporated using boot-
strap sample statistics as outlined above. Table 4 gives
statistics on the regression coefficients using noninfor-
mative and bootstrap priors. The bootstrap prior is based
on data from the period 1851–99. The largest difference
occurs on the CTI coefficient (b1) where a 28% decrease
in magnitude is noted. In contrast NAO’s influence, as
measured by the value of b2, is a bit stronger, up in
magnitude by 10%.

The influence of adding the additional data can be
seen by comparing the posterior distributions with and
without the earlier years (Fig. 6). Posterior distributions
from the Bayesian model using bootstrap (noninfor-

mative) priors are shown as a solid (dashed) line. The
nineteenth century data has the effect of focusing the
model coefficients. For instance, the range on the 95%
credible interval for b1 is 0.20 (0.23) with(out) the nine-
teenth-century records. The influence of ENSO factors
on U.S. hurricane activity decreases (the parameter dis-
tribution shifts toward zero) while the effect of the NAO
factors is enhanced slightly (the distribution shifts away
from zero). A model that includes the interaction term
is less likely upon consideration of the earlier records.
The additional data increases confidence in the values
of the model coefficients. This translates to a greater
certainty in our belief about the effect of ENSO and
NAO on coastal hurricane activity. Specifying the prior
amounts to introducing extra information. The posterior
estimate is based on a combination of information (prior
and likelihood) and thus has greater precision. We also
note a variation in the relative role of the two factors
as the effect of ENSO might have a secular component,
being weaker during the nineteenth century (see also
Elsner et al. 2001).

6. Southeast and northeast coasts

Recent research demonstrates that climatological fac-
tors influencing hurricane origin and development are
not necessarily the same as those influencing where they
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FIG. 7. Same as Fig. 6 except for annual hurricane counts along the southeast U.S. coast. The southeast coast
includes the coastal states from Texas through South Carolina.

FIG. 8. Same as Fig. 6 except for annual hurricane counts along the northeast U.S. coast. The northeast coast
includes the coastal states from North Carolina through Maine.
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FIG. 9. (a)–(f ) Predictive distributions of the number of U.S. hurricanes over the period 1995–2000. The probability
of observing H number of hurricanes where H 5 0, 1, . . . , 7 is given on ordinate. The black bar indicates the observed
number of hurricanes for that year. There were two U.S. hurricanes in 1995 (Erin and Opal).

will track (Elsner et al. 2000b). Certain ENSO-related
factors are conducive to hurricane development while
NAO-related factors control where they track (Elsner et
al. 2001). Thus both covariates are associated with re-
gional hurricane activity. For example, hurricanes af-
fecting the region from Texas through South Carolina
are more likely during La Niña when the NAO is sup-
pressed (Elsner 2003). Here we examine Bayesian mod-
els of southeast and northeast hurricanes. The southeast
(northeast) is defined as coastal states from Texas
through South Carolina (North Carolina through
Maine). The Gibbs sampler is run from the same initial
values and for the same number of updates (12 000).
Burn-in is again taken to be the first 8000 updates.

Figure 7 shows the posterior distributions of the re-
gression coefficients when the annual counts of south-
east U.S. hurricanes are the response variable. The dis-
tributions indicate that a model with ENSO and NAO
indices is more useful than a model without them. In
contrast, the data are ambiguous in favoring a model
that includes the interaction term. This is especially ev-
ident when the nineteenth-century counts are included
and is consistent with the model of all U.S. hurricanes
discussed in the previous section. The nineteenth-cen-
tury data also appear to give more (less) weight to the

NAO (ENSO) factors in statistically explaining annual
southeast coastal hurricane activity. Figure 8 shows the
posterior distributions when the northeast counts are
used as the response. Results are considerably different.
Here the most useful model is climatology (constant
term only). Alone, the twentieth-century data support a
model for northeast hurricanes that includes ENSO.
However, when the nineteenth-century records are in-
cluded, no models more useful than climatology are
found.

Results are consistent with other research in showing
a significant relationship between coastal hurricane ac-
tivity and both the ENSO and the NAO. In the Bayesian
framework model usefulness is assessed from posterior
distributions of the regression parameters. Annual hur-
ricane counts that extend back through the year 1851 are
consistent with models that include indices of ENSO and
the NAO as covariates. Counts for the entire United
States are disaggregated into southeast and northeast
coastal regions. A useful covariate model is found for
southeast hurricane activity only. We interpret differences
between the regional (southeast and northeast) models as
indicative of the contingency in hurricane landfalls. Al-
though not entirely random, landfalling hurricanes are
influenced by subtle factors unrelated to general steering
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FIG. 10. Same as Fig. 9 except for the number of (a)–(f ) southeast coast hurricanes over the period 1995–2000.

mechanisms associated with large-scale climate vari-
ability such as the NAO. This is more the case for land-
falls in the northeast where storms tend to track parallel
to the shoreline. Near misses during years in which the
climate is favorable for northeast landfalls results in extra
randomness for the annual counts making the climato-
logical average the best estimate of future activity.

7. Predictive inference

A Bayesian approach provides a unified framework for
inference and prediction. Uncertainty about model pa-
rameters is naturally transferred to predictive inference.
Here we generate predictive samples of coastal hurricane
activity as a function of year. This is achieved by as-
signing missing values to the observed annual hurricane
count during the last 6 yr (1995–2000) of the record. The
Gibbs sampler provides values for these missing obser-
vations from which a posterior distribution is generated.
This amounts to using data over the period 1851–1994
to build the model and then using the model to predict
the probability of coastal hurricane activity during each
of the six succeeding years. Since the ENSO covariate
describes conditions during the heart of the hurricane
season, the predictive model is run in a ‘‘perfect prog’’
hindcast mode, which assumes an exact prediction of
each hurricane season’s (August–October average) CTI

value. Although from a practical standpoint this is not a
wild extrapolation as there is strong persistence of SSTs
from July through August–October.

Figure 9 shows the predictive probability of observing
H U.S. hurricanes, where H 5 0, 1, . . . , 7 for each year
starting with 1995. The bars show the probability level.
The black-shaded bar indicates the observed number of
hurricanes for that year. The predictive distributions
change with values of the covariates for each year. The
1995 distribution suggests an active year with more than
a 95% chance of at least one U.S. strike. In contrast the
1997 distribution suggests an inactive year with a 50%
chance of no hurricanes. With the exception of 1999, the
observed number of hurricanes falls within the central
region (61 hurricane from the median) of the predicted
distribution. Similar predictive probabilities of observing
hurricanes along the southeast coast are shown in Fig. 10.

Hindcast skill is estimated using the maximum a pos-
teriori (MAP) estimate, which is the value that maximizes
the posterior. MAP is the Bayesian maximum likelihood
estimator. For hindcasts of U.S. hurricanes, the MAP es-
timates (pi), assuming the observed data are independent
from one year to the next, are 3, 1, 0, 2, 1, 1 for the years
1995, 1996, 1997, 1998, 1999, 2000, respectively. For the
hindcasts of southeast U.S. hurricanes, the MAP estimates
are 2, 1, 0, 2, 1, 1. The mean absolute error, given by
MAE 5 1/n S | pi 2 oi | , where oi are the observed number
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TABLE 5. Hindcast skill between the observed and predicted annual
hurricane counts. The predicted count is the maximum a posteriori
(MAP) estimate. Comparisons are made using a mean absolute error
(MAE) and the correlation coefficient. The units for MAE are number
of hurricanes per year.

Model MAE Correlation

U.S. hurricanes
Climatology
SE hurricanes
Climatology

1.4
0.9
0.8
1.0

0.39
0.00
0.50
0.00

of hurricanes, is 1.4 for U.S. hurricanes and 0.8 for south-
east U.S. hurricanes. The correlation between oi and pi is
0.39 for U.S. hurricanes and 0.50 for southeast hurricanes.
These skill estimates are compared to climatology in Table
5. Although the predictive model for all U.S. hurricanes
is no better than climatology, the model for southeast hur-
ricanes appears to be marginally better.

8. Summary and conclusions

Hurricanes cause significant social and economic dis-
ruption within the United States. Here we examine cli-
mate relationships to U.S. hurricanes from data that ex-
tend back to early industrial times. Hurricane data come
from the reanalysis project made possible by the meri-
torious works of Ludlum (1963) and Fernández-Partagás
and Diaz (1996). The present work expands EB01 to
include diagnostic models of U.S. hurricane activity. Bet-
ter understanding of hurricane occurrences provides a
sound basis for assessing the likely losses associated with
a catastrophic reinsurance contract (Michaels et al. 1997).

A hierarchical Bayesian approach is used to model
U.S. hurricanes using the NAOI and the CTI as covar-
iates. Here the earlier records are used to specify priors
and a Poisson generalized linear regression is the like-
lihood function. A Gibbs sampler is run to update the
priors. Computations are done using BUGS software.
The central message is the utility of all available records
in understanding possible future activity despite the re-
duced accuracy of the earlier records. This provides an
alternative view to the one espoused in Buckley et al.
(2003) that, due to technological advances in observing
networks, it is necessary to reduce the length of climate
records when assessing climate change.

The main conclusions are the following:

• A Bayesian approach is practical for modeling hur-
ricane datasets having varying levels of uncertainty.
This is important when relying on historical and proxy
data in rare-event analysis.

• Annual coastal hurricane counts from the past century
and a half can be successfully modeled using indices
of ENSO and NAO as predictors.

• The influence of NAO factors in modulating U.S. hur-
ricane activity is relatively more important during the
nineteenth century than during the twentieth century.

• Models with predictors are more useful on the subset

of annual counts that exclude the northeast between
North Carolina and Maine.
The model can be improved by incorporating addi-

tional information. For one thing efforts to extend coastal
hurricane counts back to 1800 are currently underway.
As a first step, we placed the information from all known
historical storms on maps that depict the geographical
location of the information source. The maps, which in-
clude damage reports, meteorological observations, and
ship logs, can be used to estimate the likelihood of coastal
hurricane activity during this earlier epoch (1800–50).
(Maps are available at http://garnet.acns.fsu.edu/jelsner/
www/.) This information as well as information gathered
from geological records of overwash deposits associated
with storm surge (see Liu and Fearn 1993, 2000; Don-
nelly et al. 2001) and proxy records of ENSO and NAO
can be included in a future version of the model.
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APPENDIX

Bayesian Model Specification for
U.S. Hurricane Activity

model{

beta[1:M] ; dmnorm(mu[1:M],

prec[1:M,1:M])

for(j in 1:M)

{

for(k in 1:M)

{

var1[j,k],21*var[j,k]

prec[j,k],2inverse

(var1[1:M,1:M],j,k)

}

}

for(i in 1:n)

{

y[i];dpois(rate[i])

log(rate[i]),2inprod

(beta[1:M],X[i,1:M])

}

}
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Gray, 2001: The recent increase in Atlantic hurricane activity:
Causes and implications. Science, 239, 474–479.

Gray, W. M., C. W. Landsea, P. W. Mielke Jr., and K. J. Berry, 1992:
Predicting Atlantic seasonal hurricane activity 6–11 months in
advance. Wea. Forecasting, 7, 440–455.

Hess, J. C., J. B. Elsner, and N. E. LaSeur, 1995: Improving seasonal
hurricane predictions for the Atlantic basin. Wea. Forecasting,
10, 425–432.

Jagger, T., J. B. Elsner, and X. Niu, 2001: A dynamic probability
model of hurricane winds in coastal counties of the United States.
J. Appl. Meteor., 40, 853–863.

Jarvinen, B. R., C. J. Neumann, and M. A. S. Davis, 1984: A tropical
cyclone data tape for the North Atlantic Basin, 1886–1983: Con-
tents, limitations, and uses. NOAA Tech. Memo. NWS NHC-
22, Coral Gables, FL, 21 pp.

Jones, G. L., and J. P. Hobert, 2001: Honest exploration of intractable
probability distributions via Markov chain Monte Carlo. Stat.
Sci., 4, 312–324.

Jones, P. D., T. Jónsson, and D. Wheeler, 1997: Extension to the North
Atlantic Oscillation using early instrumental pressure observa-
tions from Gibraltar and South-West Iceland. Int. J. Climatol.,
17, 1433–1450.

Katz, R. W., 2002: Techniques for estimating uncertainty in climate
change scenarios and impact studies. Climate Res., 20, 167–185.

Landsea, C. W., and Coauthors, 2004: The Atlantic hurricane database
re-analysis project documentation for 1851–1910: Alterations
and additions to the HURDAT database. Hurricanes and Ty-
phoons: Past, Present, and Future, R. J. Murnane and K.-B. Liu,
Eds., Columbia University Press, in press.

Lehmiller, G. S., T. B. Kimberlain, and J. B. Elsner, 1997: Seasonal
prediction models for North Atlantic basin hurricane location.
Mon. Wea. Rev., 125, 1780–1791.

Liu, K.-B., and M. L. Fearn, 1993: Lake-sediment record of late
Holocene hurricane activities from coastal Alabama. Geology,
21, 793–796.

——, and ——, 2000: Reconstruction of prehistoric landfall fre-
quencies of catastrophic hurricanes in northwestern Florida from
lake sediment records. Quart. Res., 54, 238–245.

Ludlum, D. M., 1963: Early American Hurricanes, 1492–1870. Amer.
Meteor. Soc., 198 pp.

McCullagh, P., and J. A. Nelder, 1989: Generalized Linear Models.
Chapman and Hall, 511 pp.

Michaels, A., D. Malmquist, A. Knap, and A. Close, 1997: Climate
science and insurance risk. Nature, 389, 225–227.

Murnane, R. J., and Coauthors, 2000: Model estimates hurricane wind
speed probabilities. Eos, Trans. Amer. Geophys. Union, 81, 433,
438.

Neumann, C. J., B. R. Jarvinen, C. J. McAdie, and G. R. Hammer,
1999: Tropical Cyclones of the North Atlantic Ocean, 1871–
1998. National Oceanic and Atmospheric Administration, 206
pp.

Parisi, F., and R. Lund, 2000: Seasonality and return periods of land-
falling Atlantic basin hurricanes. Aust. N. Z. J. Stat., 42, 271–
282.

Solow, A. R., and L. Moore, 2000: Testing for a trend in a partially
incomplete hurricane record. J. Climate, 13, 3696–3699.

Spiegelhalter, D. J., N. G. Best, W. R. Gilks, and H. Inskip, 1996:
Hepatitis B: A case study in MCMC methods. Markov Chain
Monte Carlo in Practice, W. R. Gilks, S. Richardson, and D. J.
Spiegelhalter, Eds., Chapman & Hall/CRC, 45–58.

Venables, W. N., and B. D. Ripley, 1999: Modern Applied Statistics
with S-PLUS. Springer, 501 pp.



15 JULY 2004 2827E L S N E R A N D J A G G E R

Wikle, C. K., 2000: Hierarchical space–time dynamic models. Lecture
Notes in Statistics: Studies in the Atmospheric Sciences, L. M.
Berliner, D. Nychka, and T. Hoar, Eds., Springer-Verlag, 199 pp.

——, and C. J. Anderson, 2003: Climatological analysis of tornado

report counts using a hierarchical Bayesian spatiotemporal mod-
el. J. Geophys. Res., 108, 9005, doi:10.1029/2002JD002806.

Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like in-
terdecadal variability: 1900–93. J. Climate, 10, 1004–1020.


