
A Model for U.S. Tornado Casualties Involving Interaction between Damage
Path Estimates of Population Density and Energy Dissipation

JAMES B. ELSNER, TYLER FRICKER, AND WILLIAM D. BERRY

Florida State University, Tallahassee, Florida

(Manuscript received 13 April 2018, in final form 2 July 2018)

ABSTRACT

A recent study showed the importance of tornado energy as a factor in a model for tornado deaths and

injuries (casualties). The model was additive under the assumption of uniform threat. Here, we test two

explicit hypotheses designed to examine this additive assumption. The first hypothesis concerns energy

dissipation’s effect conditional on population density and the second concerns population’s effect conditional

on energy. Both hypotheses are tested using a regression model that contains the product of population

density and energy dissipation. Results show that the elasticity of casualties with respect to energy dissipation

increases with population density. That is, the percentage increase in casualties with increasing energy dis-

sipation increases with population density. Similarly, the elasticity of casualties with respect to population

density increases with energy dissipation. That is, the percentage increase in casualties with increasing

population density increases with energy dissipation. Allowing energy and population elasticities to be con-

ditional rather than constant provides a more complete description of how tornado casualties are influenced

by these two important factors.

1. Introduction

Nearly one-fifth of all natural-hazard fatalities in

the United States are the direct result of tornadoes

(National Oceanic and Atmospheric Administration

2015). A tornado that hits a city is capable of inflicting

hundreds or thousands of casualties (death or injury).

Data from the Storm Prediction Center of the National

Oceanic and Atmospheric Administration show that the

27 April 2011 Sawyerville–Eoline, Alabama, tornado

produced 1564 casualties, with 64 of them resulting in

death. Less than a month later, the 22 May 2011 Joplin,

Missouri, tornado produced 1308 casualties, with 158 of

them resulting in death. More recently, the 26 Decem-

ber 2015 Garland–Rowlett, Texas, tornado resulted in

10 deaths and 468 injuries.

Casualties occur when a tornado strikes people at

home, work, school, and so on. Extreme wind speeds,

relatively short warning lead times, and low-quality

built environments increase the potential for casualties

(Greenough et al. 2001). Risk factors for a casualty in-

clude taking shelter in a manufactured home, being an

older adult, and inaccessibility to a safe room in a

basement or in a reinforced structure (Centers for

Disease Control and Prevention 2012). Early warnings

and strong shelters are the most effective way to reduce

deaths and injuries (Bohonos and Hogan 1999). The

potential for casualties is not uniform across the country,

however (Ashley and Strader 2016). Southern states are

particularly at risk because of the abundance of manu-

factured homes and the frequency of reduced-visibility

conditions (trees, hills, and heavy rain).

Our goal is to better understand how factors related to

tornado exposure and ferocity combine to determine the

number of casualties. The objective is a statistical model

that describes the rate of casualties given known tornado

path characteristics and the estimated number of people

within the path. Our exclusive focus is on casualty-

producing tornadoes. Given that a tornado produces a

casualty, how do population density and energy dissi-

pation combine to explain the number of casualties?

2. Hypotheses

Fundamentally, it is clear that a tornado’s casualty rate

(how many people get injured or killed) depends on the

density of population in the tornado’s path and the tor-

nado’s strength (i.e., the power of the winds that it gen-

erates, or, using more technical language, the amount ofCorresponding author: James B. Elsner, jelsner@fsu.edu
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atmospheric energy that it dissipates).1 Fricker et al.

(2017) estimate the elasticity of tornado casualties with

respect to each of population density and energy dissi-

pation. They use these estimates to calculate that, when

the population density within its path is held constant, a

doubling of a tornado’s energy increases casualties, on

average, by 33% (63%) and, when the energy dissipa-

tion of a tornado is held constant, a doubling of pop-

ulation density along its path increases casualties by an

average of 21% (63%).

However, the statistical analysis yielding these find-

ings is based on a model that assumes the effect of a

tornado’s strength on its casualty rate is the same re-

gardless of the population density along its path. Yet, it

seems more reasonable to expect that the effect of tor-

nado strength on the casualty rate is conditional on

population density.When the population density along a

tornado’s path is zero, by definition, the casualty rate

must be zero—since regardless of the strength of the

tornado, there are no people present to be injured or

killed. This guarantees that tornado energy has no effect

on the casualty rate when population density is zero. In

contrast, when population density along a tornado’s

path is very high, tornado energy should have a strong

effect on the casualty rate—with low-energy storms

uniformly producing a small number of casualties and

high-energy storms often resulting in a large number of

casualties. Indeed, as the population density in the path

of a tornado rises from zero, the effect of tornado energy

on casualties should gradually grow in magnitude. We

can formalize this reasoning about the way in which the

effect of tornado strength on the casualty rate is condi-

tional on population density in the following two-part

testable hypothesis—the ‘‘energy’s effect conditional on

population’’ hypothesis: 1) As long as the population

density along a tornado’s path is greater than zero, the

effect of the tornado’s energy on its casualty rate is pos-

itive regardless of the density of population in its path.

However, 2) the effect of tornado energy on the casualty

rate increases in magnitude as population density rises.

If the effect of tornado strength on the casualty rate is

conditional on population density, the symmetry of

conditionality guarantees that the effect of population

density on the casualty rate is conditional on tornado

strength (Berry et al. 2012). However, the guaranteed

conditionality does not establish the sign of the effect of

population density at any level of tornado energy. Ad-

ditional reasoning is required. Since even the weakest of

tornadoes is strong enough to kill and injure, at any

tornado energy level, an increase in the population

density along the tornado’s path puts more people

‘‘in harm’s way’’ and should result in an increase in the

casualty rate. As a tornado’s energy rises, the potential

of the storm to inflict casualties on the population in its

path should increase, and so the magnitude of the pos-

itive effect of population density on the casualty rate

should increase.

The expected positive effect of population density

on the casualty rate is not due solely to the increase in

the number of people in harm’s way. Low population

density is most likely to be found in rural areas, and

high density is most likely to be present in urban areas;

for several reasons, an urban area tends to be more

prone to tornado casualties than a rural area that is

impacted by a tornado of identical strength. Donner

(2007) argues that the types of relationships that rural

communities create, as well as the awareness that

people in such regions hold of their habitats, might

help to protect otherwise vulnerable populations. He

maintains that strong social bonds expand the scope

and availability of potential sources of weather in-

formation, access to shelters, and other resources that

help with protective action. He also speculates that

urban areas are more vulnerable to casualties because

the rare occurrence of tornadoes in urban communi-

ties leads to lack of preparedness among residents,

along with skepticism about the risks. Moreover, the

presence of tall buildings and other objects may make

it difficult to confirm visually the presence of torna-

does in urban communities. Without an environmental

cue, warning responses tend to be lower (Mileti and

O’Brien 1992).

We can formalize our reasoning about the way in

which the effect of population density on the casualty

rate is conditional on a tornado’s strength in the fol-

lowing two-part testable hypothesis—the ‘‘population’s

effect conditional on energy’’ hypothesis: 1) The effect of

population density along the path of a tornado on the

tornado’s casualty rate is positive regardless of the tor-

nado’s energy. However, 2) the effect of population

density increases in magnitude as tornado energy rises.

3. Model

We test our two hypotheses by modifying a model

introduced by Fricker et al. (2017). They estimate a

negative binomial regression with the tornado as the

unit of analysis and the event count, that is, the number

of casualties C resulting from the tornado, as dependent

variable:

C;NegBin(m̂, n) and (1a)
1We treat as synonymous the terms tornado strength, tornado

energy, and energy dissipation.

2036 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 57



ln(m)5 ln(b
0
)1b

P
ln(P)1b

E
ln(E) . (1b)

The casualty rate C is assumed to be adequately de-

scribed by a negative binomial (NegBin) distribution

with a rate parameter m and a size parameter n. The

variable P denotes population density, and E denotes

energy dissipation. The coefficient bP for ln(P) repre-

sents the elasticity of the tornado casualty rate with re-

spect to population density (hereinafter population

elasticity) and represents the percentage change in the

casualty rate that is associated with a 1% increase in

population density. Similarly, bE represents the elastic-

ity of the tornado casualty rate with respect to energy

dissipation (hereinafter energy elasticity) and reflects the

percentage change in the casualty rate that is associated

with a 1% increase in tornado energy. The functional

form of Eq. (1b) imposes the assumption that energy

elasticity is the same regardless of the value of pop-

ulation density and that population elasticity is the same

regardless of the value of energy dissipation. These as-

sumptions are directly contrary to our two conditional

hypotheses.

However, we can adapt the Fricker et al. (2017) model

to be compatible with our conditional hypotheses by

adding a multiplicative term, ln(P) 3 ln(E), to Eq. (1b)

to yield the model

C;NegBin(m̂,n) (2a)

ln(m)5 ln(b
0
)1b

P
ln(P)1b

E
ln(E)

1b
P2E

[ln(P)3 ln(E)] . (2b)

To reveal how this revised model makes energy elas-

ticity conditional on population density, we fix P in Eq.

(2b) at some constant P*:

ln(m)5 ln(b
0
)1b

P
ln(P*)1b

E
ln(E)

1b
P2E

[ln(P*)3 ln(E)] . (3)

Rearranging terms yields

ln(m)5 [ln(b
0
)1b

P
ln(P*)]

1 [b
E
1b

P2E
ln(P*)]3 ln(E) . (4)

In this equation, each of [ln(b0) 1 bP ln(P
*)] and [bE 1

bP–E ln(P
*)] is a constant, and therefore ln(m) is ex-

pressed as a linear function of ln(E). Accordingly, the

coefficient for ln(E), [bE 1 bP–E ln(P
*)], is the elasticity

of the tornado casualty rate with respect to energy dis-

sipation when population density P is equal to P*. Thus,

it is clear that Eq. (2b) specifies energy elasticity as

conditional on the value of population density; more

specifically, energy elasticity is a linear function of the

logarithm of population density, that is, ln(P). Similarly,

we can fix E in Eq. (2b) at the constant E* and manip-

ulate terms to show that [bP 1 bP–E ln(P
*)] is the elas-

ticity of the tornado casualty rate with respect to

population density when energy dissipationE is equal to

E*—implying that population elasticity is conditional on

the value of energy dissipation.

Because Eq. (2b) models the elasticity of the tor-

nado casualty rate with respect to each of energy

dissipation and population density as conditional on

the value of the other, we can describe the equation

as assuming that energy dissipation and population

density interact in influencing tornado casualties. This

is in contrast to Eq. (1b), which assumes that energy

dissipation and population density are additive in their

influence on tornado casualties. The coefficients bP,

bE, and bP–E fromEq. (2b) can be used to calculate the

elasticity of the tornado casualty rate with respect to

each of energy dissipation and population density

at any specified value of the other variable, thereby

permitting an empirical test of each of our two hy-

potheses. Moreover, the coefficient bP–E in Eq. (2b)

measures the magnitude of the interaction between

population density and energy dissipation, that is,

the magnitude of the relationship between 1) pop-

ulation elasticity and the log of energy dissipation

and 2) energy elasticity and the logarithm of pop-

ulation density.

Our overall modeling approach is similar to that of

recent work that examines factors related to tornado

casualties (Lim et al. 2017; Zahran et al. 2013; Simmons

and Sutter 2008; Donner 2007). However, it differs in

several key ways. First, we use a continuousmeasure of a

tornado’s energy dissipation—rather than path area,

enhanced Fujita-scale (EF) rating, or total damage—as

the indicator of tornado strength. Correlation among

these variables is high, but energy dissipation has a

better physical justification as it is wind power that is

proximal to the cause of casualties. Second, we exclude

tornadoes without casualties, focusing on factors influ-

encing the casualty rate among those tornadoes pro-

ducing at least one casualty. This makes our models

simpler, and the interpretation of the results more

straightforward, since for a variety of reasons most

tornadoes do not result in casualties.2 Third, our study

focuses on the interaction between the environment

(tornado energy) and a demographic factor (population

density) in explaining tornado casualties. A focus on

2 The question of whether a tornado produces casualties is

interesting but has been addressed elsewhere (e.g., Ashley

et al. 2008).
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the statistical interaction between environmental and

demographic factors is unique in research about tornado

casualties and provides a new lens throughwhich to view

factors that influence the rate of injuries and death from

tornadoes.

In brief, the results from this study offer support for

both our conditional hypotheses. We find that the

elasticity of the tornado casualty rate with respect to

energy dissipation is positive and statistically signifi-

cant across most of the range of population density

values, and that this elasticity increases with pop-

ulation density. We also find that the elasticity of the

tornado casualty rate with respect to population den-

sity is positive and statistically significant across most

of the range of energy dissipation values, and that this

elasticity increases with tornado energy. Supplemen-

tary analysis shows that if our results are biased as a

result of error in measuring population density, this

bias may result in an underestimation of the extent of

interaction between energy dissipation and population

density. The paper continues in section 4with a description

of the indicators that we use to measure tornado

casualties, tornado energy, and population density.

Results are presented in section 5. A summary of what

was done and prospects for future work are given in

section 6.

4. Data and variables

a. Tornado casualty rates

Interest centers on the count of injuries and fatali-

ties listed in the Storm Prediction Center’s tornado

database. The database is compiled from the National

Weather Service’s (NWS) Storm Data and includes

all known tornadoes dating back to 1950. A tornado

casualty is defined as a fatality or injury directly at-

tributable to a tornado or to impact by airborne,

falling, or moving debris. An example of a direct fa-

tality would be a driver killed when a motor vehicle is

tossed over. To be considered a direct injury, the in-

jury must require treatment by a first responder or

at a medical facility. An example would be a person

treated for a laceration caused by flying debris. In-

direct casualties are not considered. An example of

an indirect casualty would be electrocution during

debris removal.

NWS Storm Data also includes for each tornado the

straight-line track, start location, damage path dimen-

sions of length and maximum width, and the maximum

EF rating (wind speed damage rating on an ordered

scale of categories from 0 to 5). Reports in the database

are compiled by the NWS offices and reviewed by the

National Climatic Data Center (Verbout et al. 2006).

We consider only tornadoes occurring within the con-

terminous United States.

During the 22-yr period 1995–2016, there are 26 863

tornadoes recorded in the conterminous United States.

Of these, 2208 are linked to 25 968 casualties. Only 6.7%

of all casualties lead to death. Most casualty-producing

tornadoes result in just a few casualties. Indeed, even

among casualty-producing tornadoes, the median num-

ber of casualties is 3.

A relatively small number of casualty-producing

tornadoes result in many casualties. The Tuscaloosa–

Birmingham, Alabama, tornado of 27 April 2011 and

the Joplin tornado of 22May 2011 top the list of themost

casualties in the period. The Tuscaloosa–Birmingham

tornado was one of 362 tornadoes occurring between

25 and 28 April in the largest outbreak in recorded

U.S. history. The Joplin tornado is the deadliest in the

modern record-keeping era (since 1950).

During the period 1995–2016, tornado casualties

were most common across the southeastern quarter

of the country (Fig. 1). Alabama had the most (3937),

followed by Oklahoma (2500), Missouri (2025), Arkansas

(1759), Texas (1704), and Tennessee (1678). Round-

ing out the top 10 are Georgia (1610), Mississippi

(1400), Kentucky (1051), and North Carolina (985).

Outside the South, Massachusetts (ranked 22nd) stands

out in New England with 232 casualties from only three

tornadoes.

The number of casualties is positively related to a

tornado’s EF (wind speed) rating (Table 1). Among

casualty-producing tornadoes, on average an EF0

tornado results in two casualties, an EF1 tornado

results in 3.1 casualties, and an EF2 tornado results

in 6.5 casualties. Beyond EF2, expected casualties

increase dramatically. On average, an EF3 tornado

results in 20 casualties, an EF4 tornado results in

62 casualties, and an EF5 tornado results in 236

casualties.

b. Population density

We create a damage path from the tornado track using

the width variable and then estimate the total number of

people within the path boundary. Population data are

obtained from the Gridded Population of the World,

version 4 (GPWv4), from the Socioeconomic Data and

Applications Center at Columbia University. The da-

tabase contains decennial census density estimates for

1990, 2000, and 2010 represented as residential pop-

ulation per square kilometer. The native cell resolution

is 0.00838 latitude/longitude, which at 368N latitude

means a cell having the dimension of 0.9 km in the

north–south direction and 0.7 km in the east–west
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direction. For each tornado we assign the population

density corresponding to the closest decennial estimate

so that, for example, a tornado that occurred in 1996

uses the 2000 decennial estimate whereas a tornado that

occurred in 2012 uses the 2010 estimate.3

For the set of 2192 tornadoes with at least one

casualty4 the median population density per tornado is

31.9 people per km2, with an interquartile range be-

tween 9.88 and 137 people per km2. There are seven

orders of magnitude separating the lowest and highest

FIG. 1. Location of casualty-producing tornadoes (1995–2016) by EF rating. The size of the circle is proportional to

the number of casualties.

3 Linear interpolation of the population to the tornado year had

no significant influence on the model results.

4 Sixteen of the 2208 casualty-producing tornadoes occurred

over areas without population and are removed from further

analysis.
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per-tornado population densities (Table 2; Fig. 2). We

estimate that the EF2 Brooklyn, New York, tornado of

8 August 2007 that injured nine had the highest pop-

ulation density in its path at 13 949 people per km2.

Of the 10 casualty-producing tornadoes with the

highest population densities, 3 occurred in New York,

2 occurred in Florida, and 2 occurred in California.

Pennsylvania, Massachusetts, and Texas each had 1.

The distribution of population and population density

in the path of tornadoes byEF rating is shown in Table 3.

We estimate that about 2.5 million people have been

within the path of a tornado and 1.5 million people have

been within the path of a casualty-producing tornado.

Because of their frequency and path area, EF1 torna-

does account for the largest accumulated number of

people at risk. Given a casualty-producing tornado,

however, it is the EF3 tornadoes that, as a group, af-

fected the most people. The number of people affected

is a strong function of EF rating since more-damaging

tornadoes tend to have larger damage paths (Brooks

2004; Elsner et al. 2014; Ashley and Strader 2016).

There is no strong relationship between median pop-

ulation density and EF rating. There are 30 non-

casualty-producing tornadoes without an EF rating

with an estimated total population of 13 people within

the paths.

c. Energy dissipation as ameasure of tornado strength

Tornadoes dissipate a large amount of atmospheric

energy (Fricker et al. 2014, 2017). Following what was

done with hurricanes (Emanuel 2005), the energy dis-

sipation of a tornado is computed as

E5A
p
r�

5

j50

w
j
y3j , (5)

where the summation is over the six possible EF ratings

(0, 1, 2, 3, 4, and 5), Ap is the area of the tornado’s path

(m2), r is air density (1 kgm23), yj is the midpoint wind

speed (m s21) for each damage rating (EF scale) j, wj is

the corresponding fraction of path area by damage rat-

ing, and J is the maximum damage rating. Multiplying

the units from the individual terms results in E being

measured in a unit of power [kgm2 s23 5 joules per

second 5 watts (W)].

The fraction of path area is that recommended by

the U.S. Nuclear Regulatory Commission (see Fricker

and Elsner 2015), which combines a Rankine vortex

with empirical estimates (Ramsdell and Rishel 2007).

Threshold wind speeds for the EF ratings are a 3-s

gust. With no upper bound on the EF5 wind speeds,

the midpoint wind speed is set at 97ms21 (7.5m s21

above the threshold wind speed consistent with the

EF4 midpoint speed relative to its threshold). Addi-

tional details and justification for energy dissipation as a

valid measure of tornado strength are given in Fricker

et al. (2017).

For the set of 2192 tornadoes with at least one casu-

alty, the median energy dissipation is 97.2GW, with

an interquartile range between 14 and 514GW. The

Tallulah–Yazoo City–Durant tornado (Louisiana and

Mississippi) of 24 April 2010 that killed 10 and injured

146 has the highest energy dissipation at 66 200GW.

There are seven orders of magnitude separating the

lowest from the highest per-tornado energy dissipation

(Fig. 2).5

5. Results

a. Visual inspection of the data

Figure 3 plots the tornado casualty rate for each tor-

nado path in the sample against both the storm’s energy

TABLE 2. Descriptive statistics for the variables used to estimate

the model of Eqs. (2a) and (2b) observed over the 2192 tornadoes

in our sample. Data period: 1995–2016.

Variable Value

No. of tornadoes 2192

Avg no. of casualties per tornado 12

Median no. of casualties per tornado 3

Highest no. of casualties 1564

Lowest no. of casualties 1

Std dev of casualties 53

Avg population density per tornado (people per km2) 223

Greatest population density (people per km2) 13 949

Least population density (people per km2) 0.003

Std dev of population density (people per km2) 708

Avg energy dissipation per tornado (GW) 855

Max energy dissipation (GW) 66 200

Min energy dissipation (GW) 0.0057

Std dev of energy dissipation (GW) 2900

TABLE 1. Casualties by EF rating. Data period: 1995–2016. Here,

avg indicates the average casualties per tornado.

EF Casualties Tornadoes Fatalities Injuries Avg

0 362 183 8 354 2.0

1 2300 750 79 2221 3.1

2 4888 753 218 4670 6.5

3 7933 392 536 7397 20.2

4 7187 116 457 6730 62.0

5 3298 14 432 2866 235.6

5 The distributions of population density and energy dissipation

are approximately normal on a logarithmic scale.
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dissipation and the population density in its path. The

correlation (Pearson) between energy dissipation and

population density is20.07. Given a tornado with at least

one casualty, the number of casualties increases with the

estimated number of people in the path and with energy

dissipation. It is rare for a tornadowith less than 0.1GWof

energy dissipation to producemore than a dozen casualties

when the population density is less than 100 people per

km2. Casualty-producing tornadoes with an order of

magnitude more energy dissipation tend to produce

many more casualties, especially when affecting areas

with population densities exceeding 10 people per km2.

Energy dissipation depends strongly on the EF dam-

age rating. Tornadoes that hit more targets in developed

FIG. 2. People exposed and energy dissipation for all casualty-producing tornadoes (1995–2016). (a) Annual

average number of people exposed per tornado, (b) distribution of per-tornado population density, (c) annual

average energy dissipation per tornado, and (d) distribution of per-tornado energy dissipation. The vertical bars in

(a) and (c) are 62 standard deviations from the mean.

TABLE 3. Population and population density in the path of tornadoes (casualty producing and all) by EF damage rating. Data period:

1995–2016.

EF

No. of

tornadoes

Median path

length (km)

Total

people

Avg No. people

per tornado

Median No. people

per tornado

Avg population

density (per km2)

Median population

density (per km2)

Casualty-producing tornadoes

0 183 2 9386 51 4 440 55

1 750 5 217 053 289 17 293 37

2 753 11 397 781 528 72 186 29

3 392 24 492 471 1256 261 88 24

4 116 34 289 722 2498 824 103 27

5 14 54 89 981 6427 3318 82 25

All tornadoes

0 16 453 1 196 183 12 0 128 5

1 7463 4 698 008 94 5 139 14

2 2143 9 633 813 296 29 119 15

3 620 21 555 967 897 125 77 17

4 140 28 294 953 2107 550 91 18

5 14 54 89 981 6427 3318 82 25
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areas (built environments) have the potential to be rated

higher, all else being equal, because the rating comes

from the worst damage. In built environments with

more targets, there are more people and therefore en-

ergy dissipation might contain some population effect.

However, the correlation between energy dissipation

and population density is small, indicating that this is

not a problem.

b. Model results

We estimate the interactive negative binomial re-

gression model of Eqs. (2a) and (2b) using our dataset

of 2192 tornadoes.6 The resulting coefficient esti-

mates are presented in the top portion of Table 4. To

understand the empirical results, we use these co-

efficients to estimate the 1) energy elasticity at each

possible value of population density and 2) population

elasticity at each possible value of energy dissipation.

However, the model’s estimated elasticities are more

trustworthy for values of energy dissipation and

population density near which there are abundant

data, since estimates ‘‘far from the data’’ are less

influenced by data and more influenced by the as-

sumed functional form of the model (King and Zeng

2006). Thus, in all figures displaying model estimates

below, we restrict attention to values for population

density and energy dissipation over which the density

of observations in the sample of tornadoes is

relatively large.

In particular, we focus our attention on estimates over

the region internal to the gray polygon superimposed

over the joint distribution for population density and

energy dissipation in Fig. 3. This region was identified by

visual inspection of the plot as excluding pairs of values

for population density and energy dissipation near

which there are very few observations. The polygon—

which contains 83.4% of the tornadoes in our sample—

excludes all values of population density below 1.4 and

above 1500 people per km2 (a range containing 92.3%

of the tornadoes in the sample) and all values of

energy dissipation below 1 and above 10000GW (a range

FIG. 3. Scatterplot showing casualty-producing tornadoes by population density and energy

dissipation on logarithmic scales. The number of casualties per casualty-producing tornado is

given in color, with the color ramp being on a logarithmic scale.

6 All empirical analysis is performed using the open-source R

language for statistical computing (https://www.R-project.org)

with freely available data. All figures were made using functions

from the ggplot2 package (Wickham2009). TheR code and links to

the data for this study are available online (https://rpubs.com/

jelsner/interaction).
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containing 92.7% of tornadoes). Effectively, our choice

is the minimum area encompassing at least 83% of the

data values. Estimates are the same if we do not omit

any data, but uncertainty is higher for estimates made

outside this area.

Estimated elasticities are used to construct Fig. 4.7

The black solid lines in Figs. 4a and 4b show, respec-

tively, estimated energy elasticity (along with a 95%

confidence band) conditional on population density and

estimated population elasticity conditional on energy

dissipation. Figure 4a shows, for example, that when

population density is equal to 100 people per km2 then

energy elasticity is estimated to equal 0.357 (with

a confidence interval extending from 0.315 to 0.400)—

a value that indicates that a 1% increase in energy

dissipation is associated, on average, with a 0.357% in-

crease in the number of casualties.

The energy’s effect conditional on population hy-

pothesis predicts that 1) the effect of energy dissipation

on the casualty rate is positive at any population density

exceeding zero but that 2) the magnitude of this effect

grows as population density rises. With regard to pre-

diction 1, Fig. 4a shows that energy elasticity is positive

and statistically significant at each population density

value over which elasticities are displayed. If we extend

the focus to the entire range of values for population

density in the sample (i.e., from 0.003 to 13 949),

estimated energy elasticity is positive and statistically

significant at all population densities greater than 0.21

people per km2; this is a range of values in which 99%

of the tornadoes in the sample lie. In contrast, there

are no values for population density at which esti-

mated energy elasticity is negative and statistically

significant.

Given the functional form of Eq. (2b), prediction 2 of

the energy’s effect conditional on population hypothesis

requires that the coefficient for the multiplicative term

bP–E be positive, and indeed the estimate of this co-

efficient is positive and statistically significant (with a

significance value p of less than 0.0001), implying that

energy elasticity increases as population density rises.

More specifically, the point estimate for bP–E of 0.0415

indicates that the elasticity of the casualty rate with re-

spect to energy dissipation increases by 0.0288 with each

FIG. 4. Estimated relationship (a) between population density

and the elasticity of tornado casualties with respect to energy

dissipation and (b) between energy dissipation and the elasticity

of tornado casualties with respect to population density [on the

basis of coefficient estimates for the interactive model of

Eqs. (2a) and (2b) found in the top portion of Table 4]. The

plotted solid black lines denote point estimates of elasticities, and

the gray ribbons indicate the 95% uncertainty bound around the

point estimates. The red lines denote the point estimates of

elasticities from the additive model of Eqs. (1a) and (1b) as

presented in the bottom half of Table 4. A histogram showing the

distribution of the horizontal-axis variable is displayed at the

bottom of (a) and (b).

TABLE 4. Coefficient estimates for the interactive model of

Eqs. (2a) and (2b) and the additive model of Eqs. (1a) and (1b)

using data for n 5 2192 observed tornadoes. Std error is the stan-

dard error of the estimate, and Pr(.t) is the probability of the t

value more extreme under the null hypothesis that the coefficient

is zero. The AIC and BIC for the interactive model are 13 223

and 13 246, respectively; those for the additive model are 13 323

and 13 340, respectively. The coefficients were determined via an it-

erative maximum likelihood approach with the ‘‘glm.nb’’ function

from the Modern Applied Statistics for S (MASS) package for R

(Venables and Ripley 2002; http://www.stats.ox.ac.uk/pub/MASS4).

Estimate Std error t value Pr(.t)

Interactive model

b̂0 23.0268 0.9606 23.15 0.0016

b̂P 20.8121 0.2294 23.54 0.0004

b̂E 0.1661 0.0377 4.41 ,0.0001

b̂P2E 0.0415 0.0092 4.51 ,0.0001

Additive model

b̂0 26.8825 0.5302 213.0 ,0.0001

b̂P 0.2133 0.0248 8.62 ,0.0001

b̂E 0.3212 0.0196 16.4 ,0.0001

7Although Eq. (2b) is framed using natural logarithms, to fa-

cilitate clarity the plots in Fig. 4 and elsewhere have axes that are

scaled by using (more widely familiar) common logarithms.
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doubling of population density.8 Figure 4a helps to

clarify the extent to which energy elasticity varies with

the value of population density. The plot shows that

a shift in population density from 1.4 people per km2

(roughly the density in Plainview, Arizona) to 1500

people per km2 (roughly the density in Eastlake, Ohio)

results in an increase in estimated energy elasticity from

0.179 (0.110, 0.247) to a value more than 2.5 times in

magnitude: 0.470 (0.393, 0.549).

Figure 4b allows an evaluation of the population’s

effect conditional on energy hypothesis—which predicts

that 1) the impact of population density on the casualty

rate is positive at any value of tornado energy but that

2) the strength of the impact rises as energy dissipation

increases. For prediction 1, Fig. 4b reveals that pop-

ulation elasticity is positive and statistically significant at

each energy dissipation value of greater than 2.1GW;9

this is a range of tornado energy values in which 90.6%

of the tornadoes in the sample lie. In contrast, there are

no energy dissipation values at which estimated pop-

ulation elasticity is negative and statistically significant.

The statistically significant positive coefficient esti-

mate for the multiplicative term bP–E is evidence that

population elasticity increases as energy dissipation

rises—consistent with prediction 2 of the population’s

effect conditional on energy hypothesis. Furthermore,

Fig. 4b clarifies the implications of the coefficient for the

multiplicative term about the degree to which pop-

ulation elasticity varies with the level of tornado energy.

Increasing energy dissipation in the sample from 1 to

10 000GW prompts an increase in estimated energy

elasticity from 0.047 (20.041, 0.133) to a value that is

nearly 10 times its size: 0.432 (0.330, 0.537).

To better understand the extent of interaction be-

tween energy dissipation and population density in

influencing the tornado casualty rate, we can use the

coefficients for the model of Eqs. (2a) and (2b) to

compute the estimated tornado casualty rate conditional

on a tornado’s values for energy dissipation and pop-

ulation density. Figure 5 displays the estimated rela-

tionship between energy dissipation and the casualty

rate at three different values for population density: the

minimum value contained within the polygon in Fig. 3

(1.4 people per km2), the maximum value within the

polygon (1500 people per km2), and the median value

across tornadoes in the sample (31.9 people per km2).

As energy dissipation increases from 1 to 10 000GW, the

casualty rate is expected to increase by a difference of

1) 6.55 (from 1.54 to 8.08) when population density is at

its minimum,

2) 29.2 (from 1.79 to 31.0) when population density is at

its median, and

3) 160.5 (from 2.15 to 162.6) when population density is

at its maximum.

Thus, Figs. 4 and 5 provide strong empirical evidence

for both of our hypotheses: the energy’s effect condi-

tional on population hypothesis and the population’s

effect conditional on energy hypothesis. Specifically, the

effect on a tornado’s casualty rate of each of energy

dissipation and population density is positive at nearly

any value of the other variable, but with a magnitude

that grows with the value of the other variable.

c. The consequences of shifting from an additive
model to an interactive model

The conditionality in the effects of energy dissipation

and population density would be undetectable if we

were to analyze the data using the additive model, since

the additive model assumes that the elasticity of tornado

casualties with respect to each of energy dissipation and

population density is the same regardless of the value of

the other variable. Yet, it is interesting to assess more

systematically the implications for our understanding of

the consequences of tornadoes of abandoning the ad-

ditive model [Eqs. (1a) and (1b)] in favor of an in-

teractive model [Eqs. (2a) and (2b)].

Using the same data we employ to estimate the in-

teractivemodel, we estimate the additivemodel [i.e., the

FIG. 5. Estimated effect of tornado energy dissipation on the ca-

sualty rate at various levels of population density (colors) on the basis

of coefficient estimates for the interactive model of Eqs. (2a) and (2b).

8 To get the value 0.0288, one multiplies the coefficient bP–E by

ln(2): 0.0415 3 0.6931 5 0.0288.
9 For comparison a 40m s21 hurricane dissipates about 12.5GW

of kinetic energy over the average lifetime of a tornado (12min; see

Emanuel 1999).
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model created by deleting the multiplicative term in

Eq. (2b)]; the resulting coefficient estimates are pre-

sented in the bottom half of Table 4. The statistical

significance of the coefficient for the multiplicative term

in the interactive model constitutes initial evidence that

the interactive model provides a better fit to the data

than the additive model. However, it may be that the

improvement in fit by specifying that population density

and energy dissipation interact is too small to justify

abandoning the simpler additive model in favor of the

more complex interactive model. Thus, we conduct two

tests suitable for comparing additive and interactive

models in a way that balances model fit and model

complexity by imposing a penalty for greater complex-

ity: Akaike’s information criterion (AIC) and the

Bayesian information criterion (BIC). Both criteria in-

dicate the superiority of the interactive model—with

AIC decreasing from 13 323 to 13 223 and BIC de-

creasing from 13 340 to 13 246—when the multiplicative

term is added to the model.

We can analyze the impact of shifting from an additive

model to an interactive model on the magnitude of es-

timated elasticities. The horizontal red lines in Fig. 4 plot

the estimated value of energy elasticity (Fig. 4a) and

population elasticity (Fig. 4b) obtained from the addi-

tive model. The fact that each red line is horizontal is

a consequence of the additive model’s assumption that

the elasticity of the casualty rate with respect to each of

energy dissipation and population density is constant.

We saw above (from Fig. 4a) that the interactive model

yields the estimate that, as population density increases

from 1.4 to 1500 people per km2, energy elasticity in-

creases from 0.179 to 0.470. This contrasts with the ad-

ditive model’s estimate of a constant energy elasticity

of 0.321. The interactive model also estimates that as

energy dissipation increases from 1 to 10 000GW, pop-

ulation elasticity increases from 0.047 to 0.432, in con-

trast with the additive model’s estimate of a constant

population elasticity of 0.213.

For a final analysis of the implications of shifting from

an additive model to an interactive model, we use the

coefficients for each model to compute the predicted

casualty rate for each tornado path in the estimation

dataset given the tornado’s values for energy dissipa-

tion and population density. Then, for each tornado

path, we compute the absolute difference between the

two models’ predicted casualty rates. The median ab-

solute difference is 0.480, and the mean is 1.37. These

values may, at first glance, seem small. However, the

typical tornado produces relatively few casualties; even if

we exclude the majority of tornadoes that cause no ca-

sualties, the median casualty rate across all (casualty

producing) tornadoes is 3.Given themedian of 3, we view

an absolute difference of 0.480 as consequential. For 11%

of tornadoes, the absolute error exceeds 3, and for 5.5%,

the absolute difference is greater than 5. Moreover, a

nontrivial share of tornadoes are characterized by an

absolute difference that is very high; for 1.6% of tor-

nadoes (36), the absolute difference is greater than 10.

Clearly, modifying the statistical analysis of tornadoes to

allow estimated energy and population elasticities to be

conditional rather than constant yields a much more

nuanced, and richer, characterization of the effects of a

tornado’s strength and of the population in its path on

the resulting number of casualties.

d. A potential bias from the population data

Ideally, our measure of population density should

reflect the number of people in the path of the tornado

when the tornado strikes. However, because we do not

have access to this information, we rely on the number of

people that reside within a tornado’s path—ignoring the

fact that, when the tornado strikes, some people residing

in the path will be away from home, and others who live

outside the path will be within the path. It seems rea-

sonable to assume that residential population more

closely approximates the number of persons in a torna-

do’s path when the tornado strikes at night (and the vast

majority of people are at home) than when it strikes

during the day. If so, estimating the interactive model on

the subset of nighttime tornadoes could be conceived as

estimating the model using those tornadoes in our

sample for which population density in the path is

measured with the least error. The top half of Table 4

shows that when the model is estimated using all tor-

nadoes the coefficient for the multiplicative term—

which reflects the extent of interaction between energy

dissipation and population density in influencing the

tornado casualty rate—is 0.042. In contrast, when the

model is estimated using just nighttime tornadoes

(i.e., those between sunset and sunrise), the coefficient

for the multiplicative term increases in magnitude to

0.049. This supplementary analysis suggests that if our

main results are biased as a result of measurement error

then this bias results in an underestimation of the extent

of interaction between population density and energy

dissipation on casualties.

6. Summary

A recent study showed the importance of energy

dissipation on tornado casualties using an additive

regression model (Fricker et al. 2017). In this paper

we test two explicit hypotheses designed to examine the

additive assumption implicit in this earlier study. The

first hypothesis concerns energy’s effect conditional on
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population, and the second concerns population’s effect

conditional on energy. The hypotheses are tested with a

regression model that contains a term as the product of

population density and energy dissipation.

New results here show that energy elasticity increases

with population density. That is, the percentage increase

in casualties with increasing energy dissipation increases

with population density. Similarly, population elasticity

increases with energy dissipation. That is, the percent-

age increase in casualties with increasing population

density increases with energy dissipation. The conclu-

sion is unambiguous in that allowing energy and pop-

ulation elasticities to be conditional rather than constant

provides a more complete description of how casualties

are influenced by these two factors as indicated bymore-

accurate predictions of casualty rates.

This study focused on the two dominant factors that

determine the number of casualties resulting from a

tornado: tornado energy and population density. It is

undoubted that casualties are influenced by other

variables as well. Future work will use the modeling

framework described here to address the role specific

socioeconomic and demographic variables have in sta-

tistically explaining tornado casualties. Toward that end

it will be necessary to obtain consistent estimates of

these variables at the tornado level, and the model will

need to include random effects related to when the

tornado occurs (such as month or time of day).
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