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13
IMPACT MODELS

“The skill of writing is to create a context in which other people can think.”
—Edwin Schlossberg

In this chapter, we show some broader applications of our models and methods. We
focus on impact models. Hurricanes are capable of generating large financial losses.
We begin with a model that estimates extreme losses conditional on climate covari-
ates.We then describe amethod for quantifying the relative change in potential losses
over the decades.

13.1 EXTREME LOSSES

Financial losses from humans are to some extent directly related to fluctuations in
hurricane climate. Environmental factors influence the frequency and intensity of hur-
ricanes at the coast (see Chapters 7 and 8). So, it is not surprising that these same
environmental signals appear in estimates of total damage losses.
Economic damage is the loss associated with a hurricane’s direct impact.1 A nor-

malization procedure adjusts the loss estimate from a past hurricane to what it would
be if struck in a recent year by accounting for inflation and changes in wealth and pop-
ulation, plus a factor to account for changes in the number of housing units exceeding
population growth. The method produces loss estimates that can be compared over
time (Pielke et al. 2008).

1 Direct impact losses do not include losses from business interruption or other macroeconomic
effects including demand surge and mitigation efforts.
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13.1.1 Exploratory Analysis

Here you focus on losses exceeding one billion ($ U.S.) that have been adjusted to
2005. The loss data are available in Losses.txt in JAGS format (see Chapter 9). Input
the data by typing

> source("Losses.txt")

The log-transformed loss amounts are in the column labeled ‘y’. The annual number
of loss events are in the column labeled ‘L’. The data cover the period 1900–2007.
More details about these data are given in Jagger et al. (2011). You begin by plotting
a time series of the number of losses and a histogram of total loss per event.

> layout(matrix(c(1, 2), 1, 2, byrow=TRUE),

+ widths=c(3/5, 2/5))

> plot(1900:2007, L, type="h", xlab="Year",

+ ylab="Number of Loss Events")

> grid()

> mtext("a", side=3, line=1, adj=0, cex=1.1)

> hist(y, xlab="Loss Amount ($ log)",

+ ylab="Frequency", main="")

> mtext("b", side=3, line=1, adj=0, cex=1.1)

Plots are shown in Figure 13.1. The annual number of loss events varies between 0 and
4. There appears to be slight increase in the number events over time. The frequency
of extreme losses per event decreases nearly linearly on the log scale (seeMurnare and
Elsner 2012). A time series of the amount of loss indicates no trend. Themean value is
the expected loss while the standard deviation is associated with the unexpected loss.
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Figure 13.1 Loss events and amounts. (a) Number of events and (b) amount of loss.
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Tail values are used to estimate the “value-at-risk” (VaR) in financial instruments used
by the insurance industry.

13.1.2 Conditional Losses

You assume that a Poisson distribution adequately quantifies the number of large
loss events2 and a generalized Pareto distribution (GPD) quantifies the amount of
losses above the billion-dollar threshold (seeChapter 8).The frequency of loss events
and the amount of losses given an event vary with your covariates including sea-
surface temperature (SST), the SouthernOscillation Index (SOI), theNorth Atlantic
Oscillation (NAO), and sunspot number (SSN) as described in Chapter 6.
Themodel is written in JAGS code available in JAGSmodel3.txt.More details about

the model are available in Jagger et al. (2011). Posterior samples from themodel (see
Chapter 12) are available through a graphical user interface (GUI). Start the GUI by
typing3

> source("LossGui.R")

Use the slider bars to vary the covariates. The covariates are scaled between ±2 s.d.
Select OK to bring up the return-level graph. You can select the graph to appear as a
bar or dot plot.
The GUI allows you to easily ask “what if ” questions related to future damage

losses. As one example, Figure 13.2 shows the posterior predictive distributions of
return levels for individual loss events using two climate scenarios. For each return
period, the black square shows the median and the red squares show the 0.05, 0.25,
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Figure 13.2 Loss return levels. (a) Weak and few versus (b) strong and more.

2 There is no evidence of loss event clustering.
3 If you are using aMAC, you will need to download and install the GTK+ framework. Youwill also
probably need the package gWidgetstcltk.
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0.75, and 0.9 quantile values from the posterior samples. The left panel shows the
losses when SST = −0.243◦C, NAO = +0.7 s.d., SOI = −1.1 s.d., and SSN =

115. The right panel shows the losses when SST = +0.268◦C, NAO = −1.4 s.d.,
SOI=−1.1 s.d., andSSN=9. The first scenario is characterizedby covariates related
to fewer andweaker hurricanes and the second scenario is characterized by covariates
related to more and stronger hurricanes. The loss distributions are substantially dif-
ferent between the two scenarios. Under the first scenario, the median return level of
a 50-year loss event is $18.2 bn; this compares with a median return level of a 50-year
loss event of $869.1 bn under the second scenario.
The results are interpreted as a return level for a return period of 50 years with

the covariate values as extreme or more extreme than the ones given (about one s.d.
in each case). With four independent covariates and an annual probability of about
16 percent that a covariate is more than one standard deviation from the mean, the
chance that all covariates will be this extreme or more in a given year is less than
0.1 percent. The direction of change is consistent with a change in U.S. hurricane
activity using the same scenarios and inline with your understanding of hurricane
climate variability in this part of the world.
The model is developed using aggregate loss data for the entire United States sus-

ceptible to North Atlantic hurricanes. It is possible to model data representing a
subset of losses capturing a particular insurance portfolio. Moreover, since the model
usesMCMCsampling, it can be extended to include error estimates on the losses. The
model can also accommodate censored data where you know that losses exceeded a
certain level, but you do not have information about the actual loss amount.

13.1.3 Industry LossModels

Hazard risk affects the profits and losses of companies in the insurance industry. Some
of this risk is transferred to the performance of securities traded in financial markets.
This implies that early reliable information from loss models is useful to investors.
A loss model consists of three components: hurricane frequency and intensity, vul-

nerability of structures, and loss distributions. They are built using a combination of
numerical, empirical, and statistical approaches. The intensity and frequency compo-
nents rely on “expanding” the historical hurricane data set.This is done by resampling
hurricane attributes to generate thousands of synthetic cyclones.
The approach is useful for estimating probable maximum losses (PML), which is

the expected value of all losses greater than some high value. The value is chosen
based on the quantile of the loss say L(τ), where τ = 1 − 1/RP and where RP is
the return period of an event. The PML can be estimated on a local exposure portfo-
lio or a portfolio spread across sections of the coast. The PML defines the amount of
money that a reinsurer or primary insurer should have available to cover a given port-
folio. In order to estimate the 1-in-100-year PML, a catalogue that contains at least an
order of magnitude more synthetic cyclones than contained in the historical data set
is required.
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The earlier model uses only the set of historical losses so, it allows you to antic-
ipate futures losses on the seasonal and multiyear time scales without relying on a
catalogue of synthetic cyclones. The limitation however is that the losses must be
aggregated over a region large enough to capture a sufficient number of loss events.
The aggregation can be geographical, like Florida, or across a large anddiverse enough
set of exposures.
The model is further limited by the quality of the historical loss data. Although

the per hurricane damage losses are adjusted for increases in coastal population, the
number of loss events is not. A cyclone making landfall early in the record in a region
void of buildings did not generate losses, so there is nothing to adjust. This is not
a problem if losses from historical hurricanes are estimated using constant building
exposure data available in a hazardmodel.

13.2 FUTURE WIND DAMAGE

A critical variable in a loss model is hurricane intensity. Here we show you a way
to adjust this variable for climate change. The methodology focuses on a statistical
model for cyclone intensity trends, the output of which can be used as input to a
hazardmodel. Details are found in Elsner et al. (2011).

13.2.1 Historical Catalogue

You begin by determining the historical hurricanes relevant to your location of inter-
est. This is done with the get.tracks function in getTracks.R (see Chapter 6).
Here your interest is a location on Eglin Air Force Base (EAFB) with a latitude
30.4◦N and longitude −86.8◦E. You choose a search radius of 100 nmi as a com-
promise between having enough cyclones to fit a model and having only those that
are close enough to cause damage at the base. You also specify a minimum intensity
of 33 m s−1.

> load("best.use.RData")

> source("getTracks.R")

> lo = -86.8; la = 30.4; r1 = 100

> loc = data.frame(lon=lo, lat=la, R=r1)

> eafb = get.tracks(x=best.use, locations=loc,

+ umin=64, N=200)

Tracksmeeting the criteria are given in the list object eafb$trackswith each com-
ponent a data frame containing the attributes of individual cyclones from best.use

(see Chapter 6).
Your interest is restricted further to a segment of each track near the coast. That

is, you subset your tracks keeping only the records when the cyclone is near your
location. This is done using the selectTrackSubset function and specifying a
radius for clipping the tracks beyond 300 nmi. You also convert the translation speed
(maguv) to m s−1.
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Figure 13.3 Tracks of
hurricanes affecting
EAFB.

> r2 = 300

> eafb.use = getTrackSubset(tracks=eafb$tracks,

+ lon=lo, lat=la, radius=r2)

> eafb.use$maguv = eafb.use$maguv * .5144

The output is a reduced data frame containing cyclone locations and attributes for
track segments corresponding to your location. Finally, you remove tracks that have
fewer than 24 hr of attributes.

> x = table(eafb.use$Sid)

> keep = as.integer(names(x[x >= 24]))

> eafb.use = subset(eafb.use, Sid %in% keep)

You plot the tracks on a map (Fig. 13.3) reusing your code from Chapter 6. The plot
shows a uniform spread of cyclones approaching EAFB from the south with an equal
number of hurricanes passing to the west as passing to the east.
Your catalogue of historical hurricanes affecting EAFB contains 47 hurricanes. You

summarize various attributes of these hurricanes with plots and summary statistics.
Your interest is on attributes as they approach land so you first subset on the land
marker (M).

> sea = subset(eafb.use, !M)

A graph showing the distributions of translational speed and approach direction is
plotted by typing

> par(mfrow=c(1, 2), mar=c(5, 4, 3, 2) + 1, las=1)

> hist(sea$maguv, main="",

+ xlab="Translational Speed (m/s)")

> require(oce)

> u = -sea$maguv * sin(sea$diruv * pi/180)

> v = -sea$maguv * cos(sea$diruv * pi/180)
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Figure 13.4 Translation speed and direction of hurricanes approaching EAFB.

> wr = as.windrose(u, v, dtheta=15)

> plot.windrose(wr, type="count", cex.lab=.5,

+ convention="meteorological")

The histograms are shown in Figure 13.4. The smoothed curve on the histogram
is a gamma density fit using the fitdistr function (MASS package). The wind
rose function is from the oce package (Kelley, 2011). The median forward speed of
approaching cyclones is 3.9 m s−1 and the most common approach direction is from
the southeast.
The correlation between forward speed and cyclone intensity is 0.3. For the subset

of approaching cyclones that are intensifying, this relationship tends to get stronger
with increasing intensity. The evidence supports the idea of an intensity limit for hur-
ricanes moving too slow due to the feedback caused by the cold ocean wake. This is
likely to be evenmore the case in regions where the oceanmixed layer is shallow.
From a broader perspective, Figure 13.5 shows the relationship between forward

speed and cyclone intensity for all hurricanes over the North Atlantic south of 30◦N
latitudemoving slower than 12m s−1. The plot shows the lifetimemaximum intensity
as a function of average translation speed, where the averaging is done when cyclone
intensity is within 10 m s−1 of its lifetime maximum.
The two-dimensional plane of the scatter plot is binned into rectangles with the

number of points in each bin shown on a color scale. A local regression line (with
standard errors) is added to the plot showing the conditional mean hurricane inten-
sity as a function of forward speed. The line indicates that, on average, intensity
increases with forward speed, especially for slower moving hurricanes (Mei et al.,
2012). The relationship changes sign for cyclones moving faster than about 8 m s−1.
A linear quantile regression (not shown) indicates that the relationship is stronger for
quantiles above the median although forward speed explains only a small proportion
(about 1 percent) of lifetime maximum intensity.
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Figure 13.5 Lifetime maximum intensity and translation speed.

13.2.2 Gulf ofMexicoHurricanes and SST

Your historical catalogue of 47 hurricanes is too small to provide an estimate of
changes over time. Instead, you examine the set of hurricanes over the entire Gulf of
Mexico. Changes to hurricanes over this wider regionwill likely be relevant to changes
at EAFB.
Subset the hurricanes within a latitude by longitude grid covering the region using

the period 1900 through 2009, inclusive.

> llo = -98; rlo = -80

> bla = 19; tla = 32

> sy = 1900; ey = 2009

> gulf.use = subset(best.use, lon >= llo & lon <= rlo

+ & lat >= bla & lat <= tla & Yr >= sy & Yr <= ey)

Next, find the per cyclone maximum intensity for cyclones while in the Gulf of
Mexico.

> source("getmax.R")

> GMI.df = get.max(gulf.use, maxfield="WmaxS")

> GMI.df$WmaxS = GMI.df$WmaxS

Use the July SST over theGulf ofMexico as your covariate for modeling the chang-
ing intensity of Gulf hurricanes. The gridded SST data are in ncdataframe.RData,
where the column names are the year and month concatenated as a character string
that includes Y andM. First, create a character vector of the column names.
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> se = sy:ey

> cNam = paste("Y", formatC(se, 1, flag="0"), "M07",

+ sep="")

Then, load the data, create a spatial points data frame, and extract the July values for
North Atlantic.

> load("ncdataframe.RData")

> require(sp)

> coordinates(ncdataframe) = c("lon", "lat")

> sstJuly = ncdataframe[cNam]

Next, average the SST values in your Gulf of Mexico grid box. First, create a matrix
from your vertex points of your grid box. Then, create a spatial polygons object from
the matrix and compute the regional average using the over function. Next, make a
data frame from the resulting vector and a structure data set of corresponding years.
Finally, merge this data frame with your earlier wind data frame.

> bb = c(llo, bla, llo, tla, rlo, tla, rlo, bla,

+ llo, bla)

> Gulfbb = matrix(bb, ncol=2, byrow=TRUE)

> Gulf.sp = SpatialPolygons(list(Polygons(list(

+ Polygon(Gulfbb)), ID="Gulfbb")))

> SST = over(x=Gulf.sp, y=sstJuly, fn=mean)

> SST.df = data.frame(Yr=sy:ey, sst=t(SST)[, 1])

> GMI.df = merge(SST.df, GMI.df, by="Yr")

The data frame has 451 rows one for each hurricane in the Gulf of Mexico region
corresponding to the fastest wind speed while in the domain. The spatial distribution
favors locations just off the coast and along the eastern boundary of the domain.

13.2.3 Intensity Changes with SST

Theory, models, and data provide support for estimating changes to cyclone intensity
over time. The heat-engine theory argues for an increase in the maximum poten-
tial intensity of hurricanes with increases in SST. Climate model projections indicate
an increase in average intensity of about 5–10 percent globally by the late twenty-
first century with the frequency of the most intense hurricanes likely increasing even
more. Statistical models using a set of homogeneous tropical cyclone winds show the
strongest hurricanes getting stronger with increases as high as 20 percent per degree
celsius for the strongest hurricanes.
Your next step is to fit a model for hurricane intensity change relevant to your cat-

alogue of cyclones affecting EAFB. The correlation between per hurricane maximum
intensity and the corresponding July SST is a mere 0.04, but it increases to 0.37 for
the set of hurricane above 64m s−1.
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You use a quantile regression model (see Chapter 8) to account for the relation-
ship between intensity and SST. Save the wind speed quantiles and run a quantile
regressionmodel of lifetimemaximumwind speed (intensity) on SST. Save the trend
coefficients and standard errors from the model for each quantile.

> tau = seq(.05, .95, .05)

> qW = quantile(GMI.df$WmaxS, probs = tau)

> n = length(qW)

> require(quantreg)

> model = rq(WmaxS ˜ sst, data=GMI.df, tau=tau)

> trend = coefficients(model)[2, ]

> coef = summary(model, se="iid")

> ste = numeric()

> for (i in 1:n){

+ ste[i] = coef[[i]]$coefficients[2, 2]

+ }

Next use a local polynomial regression to model the trend as a change in inten-
sity per degree celsius and plot the results. The regression fit at intensity w is made
using points in the neighborhood of w weighted inversely by their distance to w. The
neighborhood size is a constant of 75 percent of the points.

> trend = trend/qW * 100

> ste = ste/qW * 100

> model2 = loess(trend ˜ qW)

> pp = predict(model2, se=TRUE)

> xx = c(qW, rev(qW))

> yy = c(pp$fit + 2 * pp$se.fit,

+ rev(c(pp$fit - 2 * pp$se.fit)))

> plot(qW, trend, pch=20, ylim=c(-20, 30),

+ xlab="Intensity (m/s)",

+ ylab="Percent Change (per C)")

> polygon(xx, yy, col="gray", border="gray")

> for(i in 1:n) segments(qW[i], trend[i] - ste[i],

+ qW[i], trend[i] + ste[i])

> points(qW, trend, pch=20)

> lines(qW, fitted(model2), col="red")

> abline(h=0, lty=2)

Results are shown in Figure 13.6. Points are quantile regression coefficients of per
cyclone maximum intensity on SST and the vertical bars are the standard errors. The
red line is a local polynomial fit through the points and the gray band is the 95 percent
confidence band around the predicted fit. There is little change in intensity for the
weaker cyclones but there is a large, and for some quantiles, statistically significant
upward trend in intensity for the stronger hurricanes.
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Figure 13.6 Intensity change as a function of SST for Gulf of Mexico hurricanes.

13.2.4 StrongerHurricanes

Next you quantify the trend in SST over time using linear regression of SST on year.

> model3 = lm(sst ˜ Yr, data=SST.df)

> model3$coef[2] * 100

Yr

0.679

The upward trend is 0.68◦Cper century, explaining 36 percent of the variation in July
SST over the period of record. The magnitude of warming you find in the Gulf of
Mexico is consistent with estimates of between 0.4 and 1◦C per century for warming
of the tropical oceans (Deser et al., 2010).
Your estimate of the per degree celsius SST increase in hurricane intensities (as a

function quantile intensity) together with your estimate of the SSTwarming is used to
estimate the increase in wind speeds for each hurricane in your catalogue.You assume
that your catalogue is a representative sample of the frequency and intensity of future
hurricanes, but that the strongest hurricanes will be stronger due to the additional
expected warmth. The approach is similar to that used in Mousavi et al. (2011) to
estimate the potential impact of hurricane intensification and sea-level rise on coastal
flooding.
The equation for increasing wind speeds w of hurricanes in your catalogue of

hurricanes affecting EAFB is given by

w2110 = [1+Δw(q) · ΔSST] ·w (13.1)

where w2110 is the wind speed 100 years from 2010,Δw(q) is the fractional change in
wind speed per degree change in SST as a function of the quantile speed (red curve),
and ΔSST is the per century trend in SST. You certainly do not expect an extrapola-
tion (linear or otherwise) to accurately represent the future, but the method provides
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an estimate of what Gulf of Mexico hurricanes might look like, on average, during the
twenty-second century.
Additional cyclone vitals including radius to maximumwinds, a wind decay param-

eter, and minimum central pressure need to be added to the catalogue of cyclones to
make them useful for storm surge and wind-field components (Vickery et al., 2006),
like those included in the U.S. Federal Emergency Management Agency (FEMA)
HAZUSmodel. Lacking evidence indicating these vitals will change in the future you
would use historical values. Otherwise, youwould adopt amethod similar towhat you
used earlier for cyclone intensity. In the end, you have two cyclone catalogues, one
representing the contemporary view and the other representing a view of the future,
a view that is consistent with the current evidence and theory of hurricanes intensity
and which aligns with the consensus view on anthropogenic global warming.
This chapter demonstrated a fewways in which themodels andmethods described

in the earlier chapters are used to answer questions about possible future impacts.
In particular, we showed you how data on past insured losses can be used to hedge
against future losses conditional on the state of the climate. We also showed you how
to model potential changes to local hurricane impacts caused by a changing cyclone
climatology.
This concludes your study of hurricane climatology using modern statistical meth-

ods. We trust your new skills will help you make important discoveries in the
fascinating field of hurricane climate. Good luck.
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