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12
BAYESIAN MODELS

“Errors using inadequate data are much less than those using no data at all.”
—Charles Babbage

In this chapter, we focus on Bayesian modeling. Information about past hurricanes is
available from instruments and written accounts. Written accounts are generally less
precise than instrumental observations, which tend to become even more precise as
technology advances. Here we show you how to build Bayesianmodels that make use
of the available information while accounting for differences in levels of precision.We
begin with a model U.S. hurricane frequency and finish with a space–time model for
ballo-wide occurrences.

12.1 LONG-RANGE OUTLOOK

We start with a model for predicting U.S. hurricane activity over the next three
decades. Themodel is useful as a benchmark for climate change studies. Themethod-
ology was originally presented in Elsner and Bossak (2001) based on the formalism
given by Epstein (1985).

12.1.1 Poisson-GammaConjugate

As you have seen throughout this book, the arrival of hurricanes on the coast is
usefully considered a stochastic process, where the annual counts are described rea-
sonably well by a Poisson distribution. The Poisson distribution is a limiting form of
the binomial distribution with no upper bound on the number of occurrences and
where the parameter λ characterizes the rate process. Knowledge of λ allows you to
make statements about future hurricane frequency. Since the process is stochastic,
your statements will be given in terms of probabilities (see Chapter 7).
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For example, the probability of ĥ hurricanes occurring over the next T years (e.g.,
1, 5, 20, etc.) is

f (ĥ|λ,T)= exp(−λT)
(λT)h

h!
for h = 0,1, . . . , λ > 0, and T > 0 (12.1)

The hat notation is used to indicate future values.
The parameter λ and statistic T appear in the formula as a product, which is the

mean and variance of the distribution. Knowledge about λ can come from historical
written archives and instrumental records. It is logical for you to want to use as much
of this information as possible before inferring something about future activity.
This requires you to treat λ as a parameter that can be any positive real number,

rather than as a fixed constant. One form for expressing your judgment about the
values λ can take is through the gamma distribution. The numbers that are used to
estimate λ from a set of data are the time interval T′ and the number of hurricanes
h′ that occurred during this interval.1 For instance, observations from the hurricane
record since 1851 indicate 15 hurricanes over the first 10 years, so T′ = 10 and
h′ = 15. To verify this, type

> H = read.table("US.txt", header=TRUE)

> sum(H$All[1:10])

[1] 15

The gamma distribution of possible future values for λ is given by

f (λ̂|h′,T′)=
T′h′

λh′−1

Γ(h′)
exp(−λT′) (12.2)

with the expected value E(λ̂) = h′/T′, and the gamma function Γ(x) given by

Γ(x)=
∫ ∞

0
tx−1e−tdt (12.3)

Of importance here is the fact that if the probability density on λ̂ is a gamma distribu-
tion, with initial numbers (prior parameters) h′ and T′, and the numbers h and T are
later observed, then the posterior density of λ̂ is also gamma with parameters h + h′
and T +T′. In other words, the gamma density is the conjugate prior for the Poisson
rate λ (Chapter 4).

12.1.2 Prior Parameters

The above formulation gives you a convenient way to combine earlier less reliable
information with later information. You simply add the prior parameters h′ and T′ to
the sample numbers h and T to get the posterior parameters.
But how do you estimate the prior parameters? You have data but the values could

be too low (or too high) due to missing or misclassified hurricanes. One way is to

1 The prime notation indicates prior (here, earlier) information.
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use bootstrapping. Bootstrapping is sampling from your sample (resampling) to pro-
vide an estimate of the variation about your statistic of interest (see Chapter 3). Here
you use the bootstrap function in the bootstrap package (Tibshirani and Leisch,
2007) to obtain a confidence interval about λ from data before 1899.
First, load the package and save a vector of the counts over the earlier period of

record. Then to get a bootstrap sample of the mean, use the bootstrap function on
this vector of counts.

> require(bootstrap)

> early = H$All[H$Year < 1899]

> bs = bootstrap(early, theta=mean, nboot=1000)

To obtain a 90 percent bootstrapped confidence interval about the mean, type

> qbs = quantile(bs$thetastar, prob=c(.05, .95))

> qbs

5% 95%

1.42 2.10

Although you cannot say with certainty what the true hurricane rate was over this
early period, you can make a sound judgment that you are 90 percent confident that
the interval contains it. In other words you are willing to admit a 5 percent chance that
the true rate is less than 1.42 and a 5 percent chance that it is greater than 2.1.
Given this appraisal of your belief about the early hurricane, rate you need to obtain

an estimate of the parameters of the gamma distribution. Said another way, given your
90 percent confidence interval for the rate, what is your best estimate for the number
of hurricanes and the length of time over which those hurricanes occurred?
You do this with the optimization function optim. You start by creating an objec-

tive function defined as the absolute value of the difference between gamma quantiles
and your target quantiles.

> obj = function(x){

+ sum(abs(pgamma(q=qbs, shape=x[1], rate=x[2]) -

+ c(.05, .95)))

+ }

You then apply the optimization function to your objective function starting with rea-
sonable initial values for the gamma parameters given in the par argument and save
the solution in the vector theta.

> theta = optim(par = c(2, 1), obj)$par

Store these parameters as separate objects by typing

> hp = theta[1]

> Tp = theta[2]

This procedure quantifies your judgment about hurricanes before the reliable set of
counts. It does so in terms of the shape and rate parameter of the gamma distribution.
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12.1.3 PosteriorDensity

You now have two distinct pieces of information fromwhich to obtain a posterior dis-
tribution for λ (landfall rate). Your prior parameters h′ = 69.7 and T′ = 39.9 from
above and your likelihood statistics based on the data over the reliable period of
record (1899–2010). The total number of hurricanes over this reliable period and
the record length are

> late = H$All[H$Year >= 1899]

> h = sum(late)

> T = length(late)

> h; T

[1] 187

[1] 112

The posterior parameters are therefore h′′ = h + h′ = 256.7 and T′′ = T + T′ =
151.9. Note that although the likelihood parameters h and T must be integers, the
prior parameters can take on any real value depending on your degree of belief.
Since the prior, likelihood, and posterior are in the same gamma family, you can

use dgamma to compute the densities.

> curve(dgamma(x, shape=h + hp, rate=T + Tp), from=1,

+ to=3, xlab="Landfall Rate [hur/yr]",

+ ylab="Density", col=1, lwd=4, las=1)

> curve(dgamma(x, shape=h, rate=T), add=TRUE,

+ col=2, lwd=4)

> curve(dgamma(x, shape=hp, rate=Tp), add=TRUE,

+ col=3, lwd=4)

> legend("topright", c("Prior", "Likelihood",

+ "Posterior"), col=c(3, 2, 1), lwd=c(3, 3, 3))
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Figure 12.1 Gamma densities for the landfall rate.
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The densities are shown in Figure 12.1. Note that the posterior density resem-
bles the likelihood but is shifted in the direction of the prior. It is also narrower. The
posterior is a weighted average of the prior and the likelihood where the weights are
proportional to the precision. The greater the precision, the more weight it carries in
determining the posterior. The relatively broad density on the prior estimate indicates
low precision. Combining the prior and likelihood results in a posterior distribution
that represents your best information about λ.

12.1.4 PredictiveDistribution

The information you have about λ is codified in the two parameters h′′ and T′′ of the
gamma density. Of practical interest is how to use this information to predict future
hurricane activity. The answer lies in the fact that the predictive density for observing ĥ
hurricanes over the next T̂ years is a negative binomial distribution, with parameters
h′′ and T′′

T̂+T′′ given by

f
(

ĥ|h′′,
T′′

T̂ +T′′
)
=

Γ(ĥ+ h′′)
Γ(h′′)ĥ!

[ T′′

T̂ +T′′
]h′′[ T̂

T̂ +T′′
]ĥ (12.4)

Themean and variance of the negative binomial are T̂ h′′
T′′ and T̂ h′′

T′′ (
T̂+T′′

T′′ ), respec-
tively. Note that the variance of the predictive distribution is larger than it would be
if λ were known precisely. If you are interested in the probability of a hurricane next
year, then T̂ is one and small comparedwith T′′ so it makes little difference, but if you
are interested in the distribution of hurricane activity over the next 20 years, then it is
important.
You plot the posterior probabilities and cumulative probabilities for the number of

U.S. hurricanes over the next 10 years by typing,

> Th = 10

> m = Th * (h + hp)/(T + Tp)

> v = Th * m * (Th + T + Tp)/(T + Tp)

> nl = 0:32

> hh = dnbinom(nl, mu=m, size=v)

> par(las=1, mar=c(5, 4, 2, 4))

> plot(nl, hh, type="h",

+ xlab="Number of U.S. Hurricanes",

+ ylab="Probability", col="gray", lwd=4)

> par(new=TRUE)

> p = pnbinom(nl, mu=m, size=v)

> plot(nl, p, type="l", col="red", xaxt="n", yaxt="n",

+ xlab="", ylab="", lwd=2)

> axis(4)

> mtext("Probability of h less than or equal to H",

+ side=4, line=2.5, las=0)
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Figure 12.2 Predictive probabilities. (a) 10 years and (b) 10, 20, and 30 years.

Results are shown in Figure 12.2, where the probabilities of H hurricanes in 10 years
are displayed with vertical bars and with a scale plotted along the left vertical axis,
and the probability that the number of hurricanes will be less than or equal to H is
displayed as a solid curve andwith a scale along the right axis. The probability that the
number of hurricaneswill exceedH is shown for a random10-, 20-, and30-year period
is shown in the right panel. The expected number of U.S. hurricanes over the next 30
years is 51, of which 18 (not shown) are anticipated to be major hurricanes. These
probabilities represent the best estimates of the future baseline hurricane climate.
The above approach is a rational and coherent foundation for incorporating all

available information about hurricane occurrences, while accounting for the differ-
ences in the precision as it varies over the years. It could be used to account for the
influence of climate change by discounting the older information. That is, records
influenced by recent changes can be given more weight than records from earlier
decades.

12.2 SEASONAL MODEL

Here you create a Bayesianmodel for predicting annual basin-wide hurricane counts.
The counts are reliable starting in the middle twentieth century. But data records on
past hurricanes extend farther back, and these earlier records are useful to understand
and predict seasonal activity. The logarithmof the annual rate is linearly related to sea-
surface temperature (SST) and the Southern Oscillation Index (SOI) as discussed in
Chapter 7.
Samples from the posterior distribution are generated using the Markov chain

Monte Carlo approach discussed in Chapter 4. The JAGS code is given below. You
copy and paste the code into a text file in your working directory with the name
JAGSmodel2.txt.

___JAGS code___

model {

for(i in 1:N) {

h[i] ˜ dpois(lambda[i])

mu[i] <- b0 + b1*SOI[i] + b2*SST[i] + b3*RI[i] +
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eta[i]

lambda[i] <- exp(mu[i])

tt[i] <- tau[RI[i] + 1]

eta[i] ˜ dnorm(0, tt[i])

}

b0 ˜ dnorm(0, .0001)

b1 ˜ dnorm(0, .0001)

b2 ˜ dnorm(0, .0001)

b3 <- log(pm)

pm ˜ dunif(lo, hi)

tau[1] ˜ dgamma(.001, .001)

tau[2] ˜ dgamma(.001, .001)

}

_______________

The code specifies the regression model and associated priors. In particular, the
annual hurricane count h[i] is stochastically generated from a Poisson distribution
with a rate lambda[i]. The parameter lambda[i] is deterministically linked to
mu[i] through the exponential function, where mu[i] is linearly related to the SST
and SOI covariates and a “reliability” index (RI[i]). The reliability index is coded as
1 for years prior to aircraft and 0 for years after. Here you use 1943 as the cutoff year.
Yourmodel includes a randomeffects term(eta[i]) that quantifies the extra vari-

ation in annual hurricane rates not modeled by the covariates. It accommodates two
variance distributions to account for the different levels of uncertainty before and after
the cutoff year. JAGS is a declarative language so the order of the assignment state-
ments is irrelevant. Your model is a directed acyclic graph (DAG), where the nodes
are the parameters and data and the arrows indicate the conditional dependency,
either stochastic or deterministic (see Chapter 4).
Load the annual data and create a data frame that includes only the data to bemod-

eled. Here the basin-wide hurricane count H, the August–October value of SOI, the
August through October value of SST, and a reliability index RI that is coded as 1 for
years prior to aircraft and 0 for years after.

> load("annual.RData")

> dat = data.frame(Yr=annual$Year, H=annual$B.1,

+ SOI=annual$soi, SST=annual$sst,

+ RI=as.numeric(annual$Year < 1943))

> dat = dat[16:160, ]

You execute the model using the jags.model function rjags (Plummer, 2011).
The function specifies the file name, the data as a list, initial values as a list, as well as
the number of chains and the number of initial updates (n.adapt).2

2 You canmonitor the progress by specifyingoptions(jags.pb="text") [or="gui"] before
your call to jags.model.
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> require(rjags)

> model = jags.model('JAGSmodel2.txt',
+ data=list(N=length(dat$H), h=dat$H,

+ SST=dat$SST, SOI=dat$SOI, RI=dat$RI,

+ lo=.2, hi=.95),

+ inits = list(b0=0, b1=0, b2=0,

+ tau=c(.1, .1), pm=.9, .RNG.seed=3042,

+ .RNG.name="base::Super-Duper"),

+ n.chains = 2,

+ n.adapt = 1000)

You continue sampling by applying the update function on the model object and
specifying the number of additional samples. You then save the last 1,000 samples of
the SST (b1) and SOI (b2) coefficients.

> update(model, 2000)

> out = coda.samples(model, c('b1', 'b2'), 1000)

The coda.samples is a wrapper function3 for jags.samples thatmonitors your
requested nodes, updates themodel, and outputs the samples to a single mcmc.list
object. The first argument is the model object, the second is a vector of variable
names, and the third is the number of iterations. To examine the samples, you plot
histograms (Fig. 12.3).

> par(mfrow=c(1, 2))

> hist(out[[1]][, 1], xlab=expression(beta[1]))

> hist(out[[1]][, 2], xlab=expression(beta[2]))

The chain number is given inside the double brackets and the sample values are given
as a matrix where the rows are the consecutive samples and the columns are the
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Figure 12.3 Posterior samples for the (a) SST (β1) and (b) SOI (β2) parameters.

3 A function whose main purpose is to call another function.
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parameters. The distributions are shifted to the right of zero verifying that both the
SST and the SOI are important inmodulating annual hurricane rates across theNorth
Atlantic.
A time series of box plots shows the distribution of the annual rate parameter (λ)

as a function of year. First, generate additional samples from the posterior, this time
monitoring lambda.

> out = coda.samples(model, c('lambda'), 1000)

Then use the fivenum function with the points and lines functions within a
loop over all years.

> plot(c(1866, 2010), c(0, 20), type="n", bty="n",

+ xlab="Year", ylab="Annual Rate (hur/yr)")

> for(i in 1:dim(dat)[1]){

+ points(dat$Yr[i], fivenum(out[[1]][, i])[3], pch=16)

+ lines(c(dat$Yr[i], dat$Yr[i]),

+ c(fivenum(out[[1]][, i])[1],

+ fivenum(out[[1]][, i])[5]))

+ }

The resulting plot is shown in Figure 12.4. The model is useful for describing the
annual rate variation and the associated uncertainty levels. The median rate is given
as a point and the range is given as a vertical line. Hurricane rates appear to fluctuate
about the value of 5 hur/yr until about 1945 when they appear to increase slightly
before falling back again during the 1970s and 1980s. There is a more substantial
increase beginning in the middle 1990s.
The extra variation in the rate specific to each year that is not modeled by the two

covariates is quantified with the term eta. The variation includes the two levels of
data precision before and after the start of the aircraft reconnaissance era. A time series
plot of posterior samples of eta are shown in Figure 12.5. The posterior median is
plotted as a point and the vertical lines extend from the 25th to the 75th percentiles.
The red line is local regression smoother through the median values. As expected, the
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Figure 12.4 Modeled annual hurricane rates.
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Figure 12.5 Extra variation in hurricane rates.

graph shows larger unexplained variations and a tendency for underprediction of the
rates (positive values) during the earlier years, but much less so afterward.

12.3 CONSENSUS MODEL

In choosing one model over another you typically apply a selection procedure on
a set of covariates to find the single “best” model. You then make predictions with
the model as if it had generated the data. Unfortunately, this approach ignores the
uncertainty in your model selection procedure resulting in over confidence in your
predictions.
For example, given a pool of covariates for hurricane activity, a stepwise regres-

sion procedure is typically employed to search through hundreds of candidatemodels
(combinations of covariates). The model that provides the best level of skill is subse-
quently chosen. The best model is then subjected to a leave-one-out cross-validation
(LOOCV) exercise to obtain an estimate of how well it will predict future data. This
procedure unfortunately does not result in a true cross-validation as the process of
selecting the covariates is itself not cross-validated. A true cross-validation assesses
how well an algorithm for choosing a particular model (including the predictor
selection phase) will do in forecasting the unknown future (see Chapter 7).
An alternative to choosing a single “best” model is to use Bayesian model aver-

aging (BMA). BMA works by assigning a probability to each model (combination
of covariates), then averaging over all models weighted by their probability (Raftery
et al., 2005). Here you produce a consensus forecast of seasonal hurricane activity.
In doing so you we show how the approach can facilitate a physical interpretation of
your modeled relationships. The presentation follows closely the work of Jagger and
Elsner (2010).

12.3.1 Bayesian Model Averaging

Let Hi, i = 1, . . . ,N denote your set of observed hurricane counts by year. Assume
that your model has k covariates, then letX be the covariate matrix with components
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X[i, j+1], i= 1, . . . ,N, j= 1, . . . k associatedwith the ith observation of the jth covari-
ate and with the intercept term X[i,1]= 1 for all i. Associated with the intercept and
k covariates are k+ 1 parametersβj, j = 1, . . . ,k+ 1.
You assume that the counts are adequately describedby a Poisson distribution. The

logarithm of the rate is regressed onto the covariates as

Hi ∼ pois(λi)

log(λi)=
k+1

∑
j=1

X[i, j]βj

This is a generalized linear model (GLM) and the method of maximum likelihoods
is used to estimate the parameters (Chapter 7). From these parameter estimates and
the values of the corresponding covariates, you infer λ from the regression equation.
The future hurricane count conditional on these covariates is described by a Poisson
distribution with amean ofλ. Thus yourmodel is probabilistic, and the average count
represents a single forecast.
A full model is defined as one that uses all k covariates. However, it is usual that

some of the covariates do not contribute much to the model. In frequentist statistics,
these are the ones that are not statistically significant. You can choose a reducedmodel
by setting some of the k parameters to zero.Thus, with k covariates, there are a total of
m = 2k possible models. The idea behind BMA is that all the m models are used with
a probability assigned to each. Predictions are made by a weighted average over the
predictionsmade with eachmodel andwhere the weights are the model probabilities.
Models with greater probability carry proportionallymore weight in the average.
Consider a simple case. You have observations of Y arising from either one of

two possible regression models. Let Y1 = α1 + ε1 be a constant mean model and
Y2 = α2 + βx + ε2 be a simple regression model where x is a single covariate. The
residual terms ε1,ε2 are independent and normally distributed with means of zero
and variances of σ 2

1 and σ 2
2 , respectively.

Suppose that you assign a probability p that the constant mean model generated
the observed data. Then there is a probability 1− p that the simple regression model
generated the data instead. With BMA, the posterior predictive expectation (mean)
of Y isμ= pμ1+(1−p)μ2 = pα1+(1−p)(α2+βx). This represents a consensus
opinion that combines information from both models as opposed to choosing one
over the other.
The posterior predictive distribution of Y given the data is not necessarily normal.

Instead it is a mixture of normal distributions with a posterior predicted variance
of pσ 2

1 + (1 − p)σ 2
2 + p(1 − p)(α2 + βx − α1)2. This variance under BMA is

larger than a simple weighted sum of the individual model variances by an amount
p(1 − p)(α2 + βx − α1)2 that represents the uncertainty associated with model
choice. Thus, the predictive distribution under BMA has a larger variance than the
predictive distribution of a single model.
Over a set of competingmodels, you need away to assign a probability to each. You

start with a collection ofmodelsMi, i = 1, . . . ,m, where each is a unique description of
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your data. For example, in the above example, you assign a probability to the constant
mean model and a probability to the simple regression model under the constraint
that the total probability over both is one.
Now with your data D and a set of proposed models Mi, you determine the prob-

ability of your data given each model [P(D|Mi)]. You also assign a prior probability
to each [P(Mi)] representing your belief that the model generated your data. Under
the situation in which you are maximally noncommittal on a model before hand you
assigned 1/m to each model’s prior probability. For example, in the above case, if
you believe both models are equally likely, then you assign P(M1) = P(M2) = 0.5.
Using Bayes rule (Chapter 4), you find the probability of the model given, the data
as P(Mi|D) = P(D|Mi) × P(Mi)/P(D) since P(D) is fixed for all models you can
let Wi = P(D|Mi) × P(Mi) be the model weights with probabilities P(Mi|D) =

Wi/∑m
i=1 Wi.

Let the random variable H represent the prediction of a future hurricane count.
The posterior distribution of H at h under each model is given by f (h|D,Mi). The
marginal posterior probability over all models is given by

f (h|D)=
m

∑
i=1

f (h|D,Mi)P(Mi|D) (12.5)

A point estimate for the future count (i.e., the posterior mean of H over the models)
is obtained by taking the expectation of H given the data as

E(H|D)=
∞
∑
h=0

hf (h|D) (12.6)

Expanding f (h|D) and switching the order of summation, you get

E(H|D)=
m

∑
i=1

P(Mi|D)
∞
∑

h=0
hf (h|D,Mi) (12.7)

which is

m

∑
i=1

P(Mi|D)E(H|D,Mi) (12.8)

whereE(H|D,Mi)= μi. For a given model, P(D|Mi) is the marginal likelihood over
the parameter space. In other words, P(D|Mi) =

∫
P(D|Mi,θ)f (θ |Mi)dθ , where

f (θ |Mi) is the prior distribution of the parameters for model Mi and P(D|Mi,θ) is
the likelihood of the data given the model [L(θ ;Mi ,D)].
The above integral cannot always be evaluated analytically or it may be infinite as

when an improper prior is put on the parameter vector θ . In these cases, approx-
imation methods can be used (Hoeting et al., 1999). Here you use the Bayesian
Information Criterion (BIC) approximation, which is based on a Laplace expansion
of the integral about themaximum likelihood estimates (Madigan andRaftery, 1994).
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In summary BMA keeps all candidate models assigning a probability based on how
likely it would be for your data to have come from each model. A consensus model,
representing a weighted average of all models, is then used tomake predictions. If val-
ues for the prior parameters come from reasonably well-behaved distributions, then a
consensus model from a BMA procedure yields the lowest mean square error of any
single best model (Raftery and Zheng, 2003).
BMA provides better coverage probabilities on the predictions than any single

model (Raftery and Zheng, 2003). Consider a data record split into a training and
testing set. Using the training set, you can create 1− α credible intervals on the pre-
dictions. Then, using the testing set, you can calculate the proportion of observations
that lie within the credible intervals. This is called the coverage probability. In stan-
dard practice with a single best model, the credible intervals are too small resulting in
coverage probabilities less than 1−α. Since BMA provides a larger variance than any
model individually, the coverage probabilities on the predictions are greater or equal
to 1−α.

12.3.2 Data Plots

You use the data saved in file annual.RData and described in Chapter 6. Load the data
and create a new data frame that is a subset of the data for years since 1866.

> load("annual.RData")

> dat = annual[annual$Year >= 1866, ]

The counts are the number of near-coastal hurricanes passing through the regions
shown in Figure 6.2. You consider monthly values of SST, SOI, NAO, and sunspots
as covariates.
Themonthly covariate values are shown in Figure 12.6 as image plots. Themonthly

values forMay throughOctober displayed on the vertical axis are plotted as a function
of year displayed on the horizontal axis. The values are shown using a color ramp
from blue (low) to yellow (high). The SST and sunspot number (SSN) covariates
are characterized by high month-to-month correlation as can be seen by the vertical
striations.

12.3.3 Model Selection

You assume that the logarithm of the annual hurricane rate is a linear combination of
a fixed subset of your covariates (Poisson generalized linear model). With six months
and four environmental variables per month, you have 224 or more than 16.7 million
possible models.
Model selection is done with functions in the BMA package (Raftery et al., 2009).

Obtain the package and source additional functions in bic.glm.R that allows you to
make posterior predictions.

> require(BMA)

> source("bic.glm.R")
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Figure 12.6 Covariates by month. (a) SST, (b) NAO, (c) SOI, and (d) sunspot number.

Specifically, you use the bic.glm function for determining the probability on each
model and the imageplot.bma function for displaying the results. First save the
model formula involving the response variable (here US.1) and all covariates.

> fml = US.1 ˜ sst.Oct + sst.Sep + sst.Aug + sst.Jul +

+ sst.Jun + sst.May + nao.Oct + nao.Sep + nao.Aug +

+ nao.Jul + nao.Jun + nao.May + soi.Oct + soi.Sep +

+ soi.Aug + soi.Jul + soi.Jun + soi.May + ssn.Oct +

+ ssn.Sep + ssn.Aug + ssn.Jul + ssn.Jun + ssn.May

Then save the output from the bic.glm function by typing

> mdls = bic.glm(f=fml, data=dat, glm.family="poisson")

The function returns an object of class bic.glm. By default, only models with a BIC
within a factor of 20 of the model with the lowest BIC are kept, and only the top 150
models of each size (number of covariates) are considered. The summary method is
used to display the results. Information on the top three models having the lowest
BIC values (highest posterior probabilities) is shown in Table 12.1.

> summary(mdls, n.models=3, digits=2)

The first column lists the covariates (and intercept). The second column gives
the posterior probability that a given coefficient is not zero over all the 209 mod-
els. One could view this as the inclusion probability. That is, what is the probability
that the associated covariate had a nonzero coefficient in the data generating model?
For example, the posterior probability that the June NAO covariate is in the data
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Table 12.1 Selected models from a BMA procedure.

p! = 0 EV SD Model 1 Model 2 Model 3

Intercept 100 7.5e-01 0.10695 0.692 0.695 0.698
sst.Oct 3.2 7.5e-03 0.07167 . . .
sst.Sep 5.8 −3.3e-02 0.21834 . . .
sst.Aug 5.0 −3.4e-03 0.15889 . . .
sst.Jul 23.9 1.7e-01 0.39788 . . .
sst.Jun 5.5 1.5e-02 0.11962 . . .
sst.May 3.4 −5.9e-03 0.11293 . . .
nao.Oct 2.2 6.1e-04 0.00729 . . .
nao.Sep 3.2 1.2e-03 0.00973 . . .
nao.Aug 1.9 3.9e-04 0.00564 . . .
nao.Jul 3.4 1.6e-03 0.01198 . . .
nao.Jun 43.3 −4.3e-02 0.05662 −0.105 −0.096 −0.103
nao.May 5.4 −3.2e-03 0.01713 . . .
soi.Oct 37.7 2.0e-02 0.02841 0.055 . .
soi.Sep 4.6 1.5e-03 0.00869 . . .
soi.Aug 25.0 1.3e-02 0.02519 . . 0.054
soi.Jul 39.2 2.4e-02 0.03381 . 0.054 .
soi.Jun 9.1 −4.6e-03 0.01740 . . .
soi.May 1.4 2.0e-04 0.00402 . . .
ssn.Oct 7.0 −3.8e-04 0.00178 . . .
ssn.Sep 94.4 −1.1e-02 0.00442 −0.012 −0.012 −0.012
ssn.Aug 1.1 1.1e-05 0.00041 . . .
ssn.Jul 1.7 −3.7e-05 0.00055 . . .
ssn.Jun 88.2 8.5e-03 0.00440 0.010 0.011 0.011
ssn.May 5.7 3.0e-04 0.00149 . . .

nVar 4 4 4
BIC 171.072 171.511 171.528
post prob 0.040 0.032 0.031

generating model is 43.3 percent. The third and fourth columns are the posterior
expected value (EV) and standard deviation (SD) across all models. Subsequent
columns include themost probablemodels as indicated by values in rows correspond-
ing to a covariate. The number of variables in the model, the model BIC, and the
posterior probability are also given in the table.
Models are ordered by BIC values with the first model having the lowest BIC the

second model having the second lowest BIC, and so on. The BIC value for a given
model is

−2 · ln L+ k ln(n), (12.9)
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Figure 12.7 Covariates by model number.

where L is the likelihood evaluated at the parameter estimates, k is the number of
parameters, and n is the number of years. BIC includes a penalty term (k ln(n)),
which makes it useful for comparingmodels with different sizes. If the penalty term is
removed, BIC can be reduced simply by increasing the number of covariates. The BIC
as a selection criterion results in choosing models that are parsimonious and asymp-
totically consistent, meaning that themodel with the lowest BIC converges to the true
model as the number of years increases.
You use a plot method to display the model coefficients (by sign) ordered by

decreasing posterior probabilities as shown in Figure 12.7.Models are listed along the
horizontal axis by decreasing posterior probability. Covariates in a model are shown
with colored bars. A brown bar indicates a positive relationship with hurricane rate
and a green bar indicates a negative relationship. Bar width is proportional to the
model’s posterior probability.

> imageplot.bma(mdls)

The plot makes it easy to see the covariates picked by the most probable models.
They are the oneswith themost consistent coloring from left to right across the image.
A covariate with only a few gaps indicates that it is included in most of the higher
probablemodels. These include September and June SSN, June NAO, July SST, and
any of the months of July through September for the SOI.
You might ask why July SST is selected as a model covariate more often than

August and September? The answer lies in the fact that when the hurricanes arrive
in August and September, they draw heat from the ocean surface so the correla-
tion between hurricane activity and SST weakens. The thermodynamics of hurricane
intensification works against the statistical correlation. Said another way, July SST
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better relates to an active hurricane season not because a warm ocean in July causes
tropical cyclones in August and September, but because hurricanes in August and
September cool the ocean slightly.
The SOI covariates get chosen frequently by the most probable models but with

a mixture across the months of July through October. The posterior probability is
somewhat higher for the months of June and October and smallest for August and
September. Thunderstorms over the eastern equatorial Pacific during El Niño pro-
duces increased shear and subsidence across the Atlantic especially over the western
Caribbean where during the months of July and October a relatively larger percent-
age of theNorth Atlantic hurricane activity occurs.Moreover, the inhibiting influence
of El Niño might be less effective during the core months of August and September
when, on average, other conditions tend to be favorable.
The sign on the September SSN parameter is negative indicating that the proba-

bility of a U.S. hurricane decreases with increasing number of sunspots. This result
accords with the hypothesis that increases in UV radiation from an active sun (greater
number of sunspots) warms the upper troposphere resulting in greater thermody-
namic stability and a lower probability of a hurricane over the western Caribbean and
Gulf of Mexico (Elsner and Jagger, 2008; Elsner et al., 2010). The positive relation-
ship between hurricane probability and June SSN is explained by the direct influence
the sun has on ocean temperature. Alternative explanations are possible especially in
light of the role the solar cycle likely plays in modulating the NAO (Kodera, 2002;
Ogi et al., 2003).
You can find the probability that a covariate irrespective of month is chosen by

calculating the total posterior probability over all models that include this covariate.
First, use the substring function on the covariate names given in the bic.glm
object under namesx to remove the last four characters in each name. Also create a
character string containing only the unique names.

> cn = substring(mdls$namesx, 1, 3)

> cnu = unique(cn)

Next create a matrix of logical values using the outer function, which performs an
outer product of matrices and arrays. Also assign column names to the matrix.

> mn = outer(cn, cnu, "==")

> colnames(mn) = cnu

Next perform amatrixmultiplication of the matching names with thematrix of logical
entries indicating which covariate was chosen. This returns a matrix with dimensions
of number ofmodels by number of covariate types.Thematrix entries are the number
of covariates in each model of that type. Finally multiply the posterior probabilities
given under postprob by a logical version of this matrix using the condition that the
covariate type is included.
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Figure 12.8 Covariates by model number. (a) Actual and (b–d) permuted series.

> xx = mdls$which %*% mn

> pc = 100 * mdls$postprob %*% (xx > 0)

> round(pc, 1)

sst nao soi ssn

[1,] 39.7 51.9 98.5 98.5

You see that the SOI and sunspot number have the largest probabilities at 98.5
percent while the NAO and SST have posterior probabilities of 51.9 percent and 39.7
percent, respectively. The lower probability of choosing the NAO reflects the rather
large intraseasonal variability in this covariate as seen in Figure 12.6.
It is informative to compare the results of your BMA with a BMA performed on a

random series of counts. Here you do this by resampling the actual hurricane counts.
The randomization results in the same set of counts, but the counts are placed ran-
domly across the years. The random series together with the covariates are used as
before and the results are mapped in Figure 12.8.
The comparison shows that your set of covariates has a meaningful relationship

with U.S. hurricane activity. There are fewer models chosen with the randomized
data sets and the number of variables included in the set of most probable models
is lower. In fact the averaged number of variables in the 20most probablemodels is 4,
which compares with an average of only one for the three randomized series. More-
over, there is little consistency in the variable selected from one model to the next as
it should be with randomized data.
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12.3.4 Consensus Hindcasts

As seen the BMA procedure assigns a posterior probability to a set of the most proba-
ble models. Each model can be used to make a prediction. But which forecast should
you believe? Fortunately, no choice is necessary. Each model makes a prediction and
then the forecasts are averaged. The average is weighted where the weights are pro-
portional to themodel’s posterior probability.Here you assume perfect knowledge of
the covariates and hindcasts are made in-sample. For an actual forecast situation, this
is not available, but the method would be the same.
You use the prediction functions in prediction.R to hindcast annual rates, rate dis-

tributions, and posterior count distributions. First, source the code file, then compute
the mean and standard deviation of the annual rate for each year. From the output,
compute the in-sample average square error.

> source("prediction.R")

> ar = bic.poisson(mdls, newdata=mdls$x, simple=TRUE)

> sqrt(mean((ar[1, ] - mdls$y)ˆ2))

[1] 1.36

Thus, on average, the consensusmodel results in amean square error of 1.4 hurricanes
per year.
Here you examine hindcast probabilities for the consecutive years of 2007 and

2008. You determine the posterior probabilities for the number of hurricanes for
each year for hurricane numbers between zero and eight and display them using a
side-by-side bar plot.

> yr1 = 2007; yr2 = 2008

> r1 = which(dat$Year==yr1)

> r2 = which(dat$Year==yr2)

> Pr = bic.poisson(mdls, newdata=mdls$x[c(r1, r2), ],

+ N=9)

> barplot(t(Pr), beside=TRUE, las=1,

+ xlab="Number of Hurricanes",

+ ylab="Probability", legend.text=

+ c(as.character(yr1), as.character(yr2)))

Results are shown in Figure 12.9. The vertical axis is the probability of observing
h number of hurricanes. The model predicts a higher probability of at least one U.S.
hurricane for 2008 compared with 2007. There is a 54 percent chance of three or
more hurricanes for 2007 and a 57 percent chance of three or more hurricanes for
2008. There was one hurricane in 2007 and three hurricanes in 2008.
The consensus model hindcasts larger probabilities of an extreme year given

the rate than would be expected from a Poisson process. That is, the consensus
model is overdispersed with respect to a Poisson distribution. This is because model
uncertainty is incorporated in the consensus hindcasts.
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Figure 12.9 Forecasts from the consensus model.

A cross-validation of the BMA procedure is needed to get an estimate of how well
the consensus model will do in predicting future counts. This is done in Jagger and
Elsner (2010) using various scoring rules including themean square error, the ranked
probability score, the quadratic (Brier) score, and the logarithmic score. They find
that the consensus model provides more accurate predictions than a procedure that
selects a single best model using BIC or AIC irrespective of the scoring rule. The con-
sensus forecast will not necessarily give you the smallest forecast error every year, but
it will always provide a better assessment of forecast uncertainty compared to a fore-
cast made from a single model. The BMA procedure provides a rational way for you
to incorporate competing models into the forecast process.

12.4 SPACE--TIME MODEL

You save yourmost ambitiousmodel for last. It drawson your knowledge of frequency
models (Chapter 7), spatial models (Chapter 9), and Bayesian methods (Chapter
4). Substantial progress has been made in understanding and predicting hurricane
activity on the seasonal and longer time scales over the basin as a whole. Much of this
progress comes from statistical models described in this book.
However, significant gaps remain in our knowledge of what regulates hurricane

activity regionally. Here your goal is amultilevel (hierarchical) statisticalmodel to bet-
ter understand and predict regional hurricane activity. Multilevel models are not new
but have gained popularity with the growth of computing power and better software.
However, they have yet to be employed to study hurricane climate. For a compre-
hensive modern treatment of statistics for spatiotemporal data, see Cressie andWikle
(2011). You begin with a set of local regressions.

12.4.1 LatticeData

Here you use the spatial hexagon framework described in Chapter 9 to create space–
time lattice data consisting of hurricane counts at each hexagon for each year and
accompanying covariate information.Some of the covariate information is at the local
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(hexagon) level and some of it is at the regional level (e.g., climate indices). Single-
level models, including linear and generalized linear models, are commonly used to
describe basin-wide hurricane activity, butmultilevel models allow you tomodel vari-
ations in relationships at the individual hexagon level and for individual years. They
are capable of describing and explaining within-basin variations.
Some data organization is needed. First input the hourly best-track data, the

netCDF SST grids, and the annual aggregated counts and climate covariates that you
arranged in Chapter 6. Specify also the range of years over which you want to model
and make a copy of the best-track data frame.

> load("best.use.RData")

> load("ncdataframe.RData")

> load("annual.RData")

> years = 1886:2009

> Wind.df = best.use

Next define the hexagon tiling. Here you follow closely the work flow outlined in
Chapter 9. Acquire the sp package. Then assign coordinates to the location columns
and add geographic projection information as a coordinate reference system.

> require(sp)

> coordinates(Wind.df) = c("lon", "lat")

> coordinates(ncdataframe) = c("lon", "lat")

> ll = "+proj=longlat +ellps=WGS84"

> proj4string(Wind.df) = CRS(ll)

> proj4string(ncdataframe) = CRS(ll)

> slot(Wind.df, "coords")[1:3, ]

lon lat

[1,] -94.8 28

[2,] -94.9 28

[3,] -95.0 28

With thespTransform function (rgdal), you change the geographicCRS to a Lam-
bert conformal conic (LCC) planar projection using the parallels 15 and 45◦N and a
center longitude of 60◦W.

> lcc = "+proj=lcc +lat_1=45 +lat_2=15 +lon_0=-60"

> require(rgdal)

> Wind.sdf = spTransform(Wind.df, CRS(lcc))

> SST.sdf = spTransform(ncdataframe, CRS(lcc))

> slot(Wind.sdf, "coords")[1:3, ]

lon lat

[1,] -3257623 3648556

[2,] -3266544 3651532

[3,] -3275488 3654496
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The transformation does not rename the coordinates, but the values are the new
LCC projected coordinates. You compare the bounding boxes to make sure that the
cyclone data are contained in the SST data.

> bbox(Wind.sdf)

min max

lon -4713727 4988922

lat 1020170 8945682

> bbox(SST.sdf)

min max

lon -4813071 8063178

lat 78055 9185849

Next, generate the hexagons. First, sample the hexagon centers using the bounding
box from the cyclone data. Specify the number of centers to be 250 and fix the offset
so that the sampler will choose the same set of centers given the number of centers
and the bounding box. Then create a spatial polygons object:

> hpt = spsample(Wind.sdf, type="hexagonal",

+ n=250, bb=bbox(Wind.sdf) * 1.2, offset=c(1, -1))

> hpg = HexPoints2SpatialPolygons(hpt)

This results in 225 hexagons each with an area of approximately 511,457 km2.
Next, overlay the hexagons on the cyclone and SST locations separately.

> Wind.hexid = over(x=Wind.sdf, y=hpg)

> SST.hexid = over(x=SST.sdf, y=hpg)

This creates a vector containing the hexagon identification number for each hourly
observation. The length of the vector is the number of observations. Similarly, for the
SST data, the integer vector has elements indicating in which hexagon the SST value
occurs.
Then use the split function to divide the data frame into groups defined by the

hexagon number. The groups are saved as lists. Each list is a data frame containing
information specific to the cyclones occurring in each hexagon. You do this for the
cyclone and SST data.

> Wind.split = split(Wind.sdf@data, Wind.hexid)

> SST.split = split(SST.sdf@data, SST.hexid)

You find that the first hexagon contains five cyclone observations. To view a selected
set of the columns from this data frame, type

> Wind.split[[1]][c(1:2, 5:7, 9, 11)]

Sid Sn Yr Mo Da Wmax DWmaxDt

3398 185 5 1878 9 1 50.0 0.467

3398.1 185 5 1878 9 1 49.4 0.484

33539.5 1168 6 1990 8 13 34.8 1.222
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33540 1168 6 1990 8 13 35.0 1.005

42583 1442 19 2010 10 29 30.0 0.690

A given hexagon tends to capture more than one cyclone hour. To view a selected set
of SST grid values from the corresponding hexagon, type

> SST.split[[1]][, 1:5]

Y1854M01 Y1854M02 Y1854M03 Y1854M04 Y1854M05

1 24.7 26.2 26.6 26.3 25.5

2 24.7 26.3 26.7 26.2 25.3

3 24.7 26.4 26.7 26.1 25.0

58 25.6 26.8 26.9 26.7 26.2

The hexagon contains four SST grid values and there are 1,871 months as separate
columns starting in January 1854 (Y1854M01). Next, reassign names to match those
corresponding to the hexagon identifications.

> names(Wind.split) = sapply(hpg@polygons, function(x)

+ x@ID)[as.numeric(names(Wind.split))]

> names(SST.split) = sapply(hpg@polygons, function(x)

+ x@ID)[as.numeric(names(SST.split))]

There are hexagon grids with cyclone data over land areas (no SST data), and there
are areas over the ocean where no cyclones occurr. Thus, you subset each to match
hexagons having cyclones and SST data.

> Wind.subset = Wind.split[names(Wind.split) %in%

+ names(SST.split)]

> SST.subset = SST.split[names(SST.split) %in%

+ names(Wind.split)]

The function %in% returns a logical vector indicating whether there is a match for
the names in Wind.split from the set of names in SST.split. The data sets are
now in synch. There are 109 hexagons with both cyclone and SST data. Note that
for the cyclone data, you could subset best.use on M==FALSE to remove cyclone
observations over land.
Next, compute the average SST within each hexagon by month and save them as a

data frame.

> SST.mean = data.frame(t(sapply(SST.subset,

+ function(x) colMeans(x))))

> head(SST.mean)[1:5]

Y1854M01 Y1854M02 Y1854M03 Y1854M04 Y1854M05

ID8 26.9 27.0 27.0 27.3 27.6

ID9 27.0 27.2 27.2 27.4 27.4

ID18 27.9 27.9 28.0 28.2 28.3

ID19 26.9 26.5 26.5 27.1 28.2



Elsner: “12˙ELSNER˙CH12” — 2012/9/24 — 19:11 — page 324 — #24

324 BayesianModels

ID20 26.8 26.3 26.1 26.9 27.9

ID21 27.0 26.5 26.3 27.0 27.9

The data frame is organized with the hexagon identifier as the row (observation) and
consecutive months as the columns (variables). Thus, there are 109 rows and 1,871
columns. Your interest in SST is more narrowly focused on the months of August
through October when hurricanes occur. To generate these values by year, type

> SSTYearMonth = strsplit(substring(colnames(SST.mean),

+ 2), "M")

> SSTYear = as.numeric(sapply(SSTYearMonth,

+ function(x) x[1]))

> SSTMonth = as.numeric(sapply(SSTYearMonth,

+ function(x) x[2]))

> SSTKeep = which(SSTMonth %in% c(8, 9, 10))

> SSTYear = SSTYear[SSTKeep]

The vector SSTKeep lists the column numbers corresponding to August, Septem-
ber, and October for each year and the vector SSTYear is the set of years for those
months.
Next, subset SST.mean by SSTKeep and then compute the August–October

average for each year.

> SST.mean.keep = SST.mean[, SSTKeep]

> SST.mean.year = sapply(unique(SSTYear), function(x)

+ as.vector(rowMeans(SST.mean.keep[,

+ which(x==SSTYear)])))

> dimnames(SST.mean.year) =

+ list(id=rownames(SST.mean.keep),

+ Year=paste("Y",unique(SSTYear), sep=""))

> SST.mean.year.subset = SST.mean.year[,

+ paste("Y", years, sep="")]

> SST.pdf = SpatialPolygonsDataFrame(

+ hpg[rownames(SST.mean.year.subset)],

+ data.frame(SST.mean.year.subset))

The data slot in the spatial polygon data frame SST.pdf contains the average SST
during the hurricane season for each year. To list the first few rows and columns, type

> slot(SST.pdf, "data")[1:5, 1:6]

Y1886 Y1887 Y1888 Y1889 Y1890 Y1891

ID8 28.4 28.2 28.5 28.4 27.7 28.4

ID9 28.0 27.8 28.1 28.0 27.3 28.1

ID18 27.7 28.0 28.5 27.5 27.6 27.7

ID19 28.5 28.4 28.6 28.5 27.9 28.5

ID20 28.4 28.4 28.1 28.2 27.6 28.6
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You plot the SST data as you did in Chapter 9 using the spplot method. First,
obtain the map borders in geographic coordinates and project them using the same
CRS as your data.

> require(maps)

> require(maptools)

> require(colorRamps)

> cl = map("world", xlim=c(-120, 20),

+ ylim=c(-10, 70), plot=FALSE)

> clp = map2SpatialLines(cl, proj4string=CRS(ll))

> clp = spTransform(clp, CRS(lcc))

> l2 = list("sp.lines", clp, col="darkgray")

Then, obtain the color ramps and plot the values from the year 1959, for example.

> spplot(SST.pdf, "Y1959", col="white",

+ col.regions=blue2red(20), pretty=TRUE,

+ colorkey=list(space="bottom"),

+ sp.layout=list(l2),

+ sub="Sea Surface Temperature (C)")

Your plot shows how the data are organized.
Next, you need to generate a data set of cyclones that correspond to these hexagons

in space and time. First, generate a list of the cyclones maximum intensity by hexagon
using your get.max function and count the number of cyclones per hexagon per
year.

> source("getmax.R")

> Wind.max = lapply(Wind.subset, function(x)

+ get.max(x, maxfield="WmaxS"))

> Wind.count = t(sapply(Wind.max, function(x)

+ table(factor(subset(x, WmaxS >= 33 &

+ Yr %in% years)$Yr, level=years))))

> colnames(Wind.count) = paste("Y",

+ colnames(Wind.count), sep="")

> Wind.count = data.frame(Wind.count)

> Wind.pdf = SpatialPolygonsDataFrame(

+ hpg[rownames(Wind.count)], Wind.count)

As an example, to list the hurricane counts by hexagon for 1959, type

> slot(Wind.pdf, "data")["Y1959"]

12.4.2 Local Independent Regressions

With your annual hurricane counts and seasonal SST collocated spatially, you build
local (hexagon-level) independent Poisson regressions (LIPR). Here “independent”
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refers to separate regressions one for each hexagon. Along with the hexagon-level
SST variable, you include the SOI as a covariate. The SOI varies by year but not by
hexagon. The SOI covariate was organized in Chapter 6 and saved in annual.RData.
Load the annual climate covariates and subset the SOI and SST columns for the

years specified in the previous section. These are your regional covariates.

> load("annual.RData")

> Cov = subset(annual, Year %in% years)[,

+ c("soi", "sst", "Year")]

Then create a data frame of your hexagon-level SST covariate and the hurricane
counts from the data slots in the corresponding spatial polygon data frames.

> LSST = slot(SST.pdf, "data")

> Count = slot(Wind.pdf, "data")

Here you build 109 separate regressions, one for each hexagon. Your annual count,
indicating the number of hurricanes whose centers passed through, varies by hexagon
and by year and you have local SST and regional SOI as covariates. Both are averages
over the months of August–October.
Themodel is a Poisson regression with a logarithmic link function.

> lipr = lapply(1:nrow(Count), function(i)

+ glm(unlist(Count[i, ]) ˜ unlist(LSST[i, ]) +

+ Cov$soi + Cov$Year, family="poisson"))

The standardized coefficients indicate the strength of the relationship between the
covariate and the annual count. The coefficient are saved for each hexagon in the
matrix zvals that you turn into a spatial polygon data frame.

> zvals = t(sapply(lipr, function(x)

+ summary(x)$coef[, 3]))

> rownames(zvals) = rownames(Count)

> colnames(zvals) = c("Intercept", "Local.SST",

+ "SOI", "Year")

> zvals.pdf = SpatialPolygonsDataFrame(

+ hpg[rownames(zvals)], data.frame(zvals))

To map the results, first generate a color ramp function, then use the spplot
method.

> al = colorRampPalette(c("blue","white","red"),

+ space="Lab")

> spplot(zvals.pdf, c("Local.SST","SOI"),

+ col.regions=al(20), col="white",

+ names.attr=c("SST", "SOI"),

+ at=seq(-5, 5),

+ colorkey=list(space="bottom",
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Standardized coefficient

Local SST SOI
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Figure 12.10 Poisson regression coefficients of counts on local SST and SOI.

+ labels=paste(seq(-5, 5))),

+ sp.layout=list(l2),

+ sub="Standardized Coefficient")

The maps are shown in Figure 12.10. The standardized coefficient can be inter-
preted as a hypothesis test, one for each of the hexagons. Values more than 2 in
absolute valve greatly indicate a significant relationship between the covariate and
hurricane probability. The probability of a hurricane is higher where the ocean is
warm and when SOI is positive (La Niña conditions), a result you would anticipate
from your basin-wide models (Chapter 7). The SST and SOI effects are strongest
over the central andwesternNorth Atlantic at low latitudes. Curiously, the SST effect
is muted along much of the eastern coast of the United States and along portions of
the Mexican coast northward through Texas. This might explain why, despite warm-
ing seas, the U.S. hurricane counts do not show an increase over the past century and
a half.
Your model contains the year as a covariate to address changes in occurrence rates

over time. The exponent of the coefficient on the year term is the factor by which
the occurrence rates are changing per year. The factor is shown for each grid in
Figure 12.11. The factors range between 0.98 and 1.02 annually depending on loca-
tion. One indicates no change, less than one a decreasing trend, and greater than one
an increasing trend. Since the data cover the period beginning in 1886, the increas-
ing trends over the central and easternNorth Atlantic might be because of improving
surveillance. However, the downward trend over a large part of the Caribbean Sea
into the Gulf of Mexico is intriguing. It might be related to increasing wind shear or
continental aerosols. In fact, you can see the downward trend along parts of the U.S.
coastline from Louisiana to South Carolina and over New England.
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Hurricane rate change factor (/year)
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Figure 12.11 Factor
by which hurricane
rates have changed
per year.

Model residuals, defined as the observed countminus the predicted rate for a given
year and hexagon, can also be mapped. Here you map the residuals for the 2005
hurricane season. First, compute the residuals by typing

> preds = t(sapply(lipr, function(x)

+ predict(x, type="response")))

> rownames(preds) = rownames(Count)

> err2005 = Count[, "Y2005"] - preds[, "Y2005"]

> err.pdf = SpatialPolygonsDataFrame(

+ hpg[names(err2005)], data.frame(err2005))

Then select a color ramp function and create a choropleth map with the spplot
method.

> al = colorRampPalette(c("blue", "white", "red"),

+ space="Lab")

> spplot(err.pdf, c("err2005"), col="white",

+ col.regions=al(20), at=seq(-5, 5, 1),

+ colorkey=list(space="bottom",

+ labels=paste(seq(-5, 5, 1))),

+ sp.layout=list(l2),

+ par.settings=list(fontsize=list(text=10)),

+ sub="Observed [count] - Predicted [rate]")

Figure 12.12 shows where the model over-(blues) and under-(reds) predicts for the
2005 hurricane season. The model underpredicted the large amount of hurricane
activity over the western Caribbean andGulf of Mexico.
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Figure 12.12 Model
residuals for the 2005
hurricane season.

12.4.3 Spatial Autocorrelation

Note the residuals tend to be spatially correlated. Residuals in neighboring hexagons
tend to be more similar than residuals in hexagons farther away. To quantify the
degree of spatial correlation, you create a weights matrix indicating the spatial neigh-
bors for each hexagon (see Chapter 9). The spdep package (Bivand et al., 2011a)
has functions for creating weights based on contiguity neighbors. First, you use
the poly2nb function (spdep) on the spatial polygons data frame to create a
contiguity-based neighborhood list object.

> require(spdep, quietly=TRUE)

> hexnb = poly2nb(err.pdf)

The list is ordered by hexagon number. The first hexagon has three neighbors;
hexagon numbers 2, 7, and 8. Hexagon numbers increase to the west and north.
A hexagon has at most six contiguous neighbors. Hexagons at the borders have
fewer neighbors. A graph of the hexagon connectivity, here defined by the first-order
contiguity, is made by typing

> plot(hexnb, coordinates(err.pdf))

> plot(err.pdf, add=TRUE)

A summary method applied to the neighborhood list (summary(hexnb)) reveals
the average number of neighbors and the distribution of connectivity among the
hexagons.
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You turn the neighborhood list object into a listw object using the nb2listw
function that adds weights to the neighborhood list. The style argument deter-
mines the weighting scheme. With the argument value set to W, the weights are the
inverse of the number of neighbors.

> wts = nb2listw(hexnb, style="W")

Next, you quantify the amount of spatial correlation through the value of Moran’s
I. This is done using the function moran (spdep). The first argument is the variable
of interest followed by the name of the listw object. Also you need the number
of hexagons and the global sum of the weights, which is obtained using the Szero
function.

> n = length(err.pdf$err2005)

> s = Szero(wts)

> mI = moran(err.pdf$err2005, wts, n=n, S0=s)$I

The function returns a value for Moran’s I of 0.39, which indicates spatial autocor-
relation in model residuals for 2005. The expected value of Moran’s I under the
hypothesis of no spatial autocorrelation is −1/(n − 1), where n is the number of
hexagons. This indicates that the model can be improved by including a term for
the spatial correlation. Other years have more or less residual autocorrelation, which
might be interesting to examine in more detail.

12.4.4 BUGSData

Next you build a spatial regression model. The model allows you to borrow informa-
tion from neighboring hexagons. Themodel ismotivated by the fact that the residuals
from your nonspatial regression above are spatially correlated and hurricanes are
infrequent in most hexagons. The model is written in BUGS (see Chapter 4). Here
you run BUGS (WinBUGS or OpenBUGS) outside of R.
As preparation you first convert your neighborhood list object to BUGS format.

Then you gather the hurricane counts and covariates as lists and put them together in
the object you call BUGSdata.

> hexadj = nb2WB(hexnb)

> BUGSData = c(list(S=nrow(Wind.count),

+ T=ncol(Wind.count), h=as.matrix(Wind.count),

+ SST=as.matrix(SST.mean.year.subset),

+ SOI=Cov$soi), hexadj)

For each hexagon (S of them) and year (T of them), there is a count (N) that
indicates the number of hurricanes. The associated covariates are the SOI and local
SST.The local SST is constructed by averaging the August–Octobermonthly gridded
SST over each hexagon for each year. For each hexagon, the neighborhood lists indi-
cate the neighboring hexagons by ID (adjacency adj), the weights for the neighbors
(weights wts), and the number of neighbors (number num).
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Finally, you use writeDatafileR from the file writedatafileR.R to write an
ASCII text representation of it to your working directory.

> source("writedatafileR.R")

> writeDatafileR(BUGSData,"BugsData.txt")

12.4.5 MCMCOutput

Counts in each hexagon for each year are described by a Poisson distribution
(dpois) with a rate that depends on hexagon and year (lambda). The logarithm
of the rate is conditional on local SST and SOI. The error term (error) and the
local effect terms include structured and unstructured components following Besag
et al. (1991), where the structured component is an intrinsic conditional autoregres-
sive (ICAR) specification. The adjacency matrix (adj), which gives your contiguity
neighborhood as defined earlier is part of the ICAR specification.
The BUGS code for the model is

___BUGS code___

model {

for(hx in 1:S) {

for(yr in 1:T) {

# Poisson likelihood for observed counts

h[hx, yr] ˜ dpois(lambda[hx, yr])

log(lambda[hx, yr]) <- sst[hx] * SST[hx, yr] +

soi[hx] * SOI[yr] +

error[hx]

}

# Error terms

error[hx] <- u.error[hx] + s.error[hx]

sst[hx] <- u.sst[hx] + s.sst[hx]

soi[hx] <- u.soi[hx] + s.soi[hx]

# Unstructured errors

u.error[hx] ˜ dnorm(int, tau)

u.sst[hx] ˜ dnorm(int.sst, tau.sst)

u.soi[hx] ˜ dnorm(int.soi, tau.soi)

}

# Structured errors

s.error[1:S] ˜ car.normal(adj[], weights[],

num[], tau.s)

s.sst[1:S] ˜ car.normal(adj[], weights[],

num[], tau.s.sst)

s.soi[1:S] ˜ car.normal(adj[], weights[],

num[], tau.s.soi)
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# Priors

int ˜ dflat()

int.sst ˜ dflat()

int.soi ˜ dflat()

tau ˜ dgamma(.5, .005)

tau.sst ˜ dgamma(.5, .005)

tau.soi ˜ dgamma(.5, .005)

tau.s ˜ dgamma(.5, .005)

tau.s.sst ˜ dgamma(.5, .005)

tau.s.soi ˜ dgamma(.5, .005)

}

_______________

Think of the model as a directed acyclic graph (DAG) as shown in Chapter 4. Nodes
are the parameters and data and the arrows indicate conditional dependency, either
stochastic (˜) or deterministic (<-).
You use uninformative (flat) priors for the intercept terms and a gamma distri-

bution for priors on the precisions. A shape parameter of 0.5 and a scale of 0.005
translates to a 1 percent probability that the standard deviation is less than 0.04 and
a 1 percent probability that the standard deviation is greater than .8, respectively. It
would also be reasonable to combine themodels into amultivariateCARmodel, with
aWishart prior, having 4 degrees of freedom and a diagonal of 0.05.
Open BUGS (outside R) and copy the code to a new BUGS document saving it as

(BUGSmodel.odc). Open the BUGSdata.txt file and copy the entire file to your
BUGS document. Finally, copy the initial values below into the same document.

___Initial Values___

list(int=0, int.sst=0, int.soi=0, tau=100, tau.sst=100,

tau.soi=100, tau.s=100, tau.s.sst=100, tau.s.soi=100)

list(int=.5, int.sst=.5, int.soi=.5, tau=100, tau.sst=100,

tau.soi=100, tau.s=100, tau.s.sst=100, tau.s.soi=100)

____________________

It might be necessary to specify high values for the precisions since you need to have
BUGS generate realistic initial samples for the uninitialized parameters. You use two
sets of initial values (two separate list objects) to help monitor and diagnose con-
vergence toward the posterior density. Each set will result in a separate chain of
samples. Here you specify separate chains using a different value for the intercept
terms.
In BUGS you first select Model > Specification to open the specification tool.

Highlight the word model in your document then select check model. It will tell
you that your model is syntactically correct in the lower left corner of the window.
Next, highlight the word list in front of your data list and select load data. Then
change the number of chains to two and select compile. It will tell you that the data
are loaded and the model is compiled. Next, highlight the word list in front of your
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first set of initial values and select load inits. It will tell you that this chain con-
tains uninitialized values. Repeat for your second set of initial values. It will again tell
you about uninitialized values. Finally, select gen inits to initialize the remaining
values (for both chains).
Next you tell BUGS what model parameters (nodes) you want to monitor. Select

Inference > Samples to open the sample monitor tool. In the node window, type
sst and then select set. These parameters are the coefficients on the SST variable.
Repeat for the coefficients on the SOI variable by typingsoi and selectingset. Note
that there are 109 SST and SOI coefficients, one of each for each hexagon.
Next, you select Model > Update to open the update tool. In the update win-

dow, type 5000, and in the refreshwindow, type 10. Although you are monitoring
only the SST and SOI coefficients, each update (iteration) represents new values
for all parameters in your model using an MCMC algorithm (see Chapter 4). Select
update. This will take time. The refresh number indicates the progress in intervals
of 10 updates.
After the MCMC has finished updating, you output the monitored parameter val-

ues from both chains. In the nodewindow, scroll to sst, then select coda. CODA is
a suite of functions for analyzing outputs from BUGS software. Save the samples and
index files separately (use the extension txt). The index file provides the order of the
samples.

12.4.6 Convergence andMixing

Before using your samples for inference, you need to check a few things. Starting
from your initial values, the MCMC algorithm produces a new set of values (the first
update sample) for each parameter (node). In most cases (except in simple models),
these new values will not represent the posterior density. As updating continues the
MCMC samples are guaranteed to converge to a stationary distribution representing
samples from your posterior. It is useful to know the minimum number of updates
needed until convergence. The period before convergence is called “burn-in”, where
the samples are moving away from the initial set of values and toward the posterior
distribution.
You can analyze your MCMC samples in BUGS directly, but there are more

options in R. Input the BUGS-outputted CODA files corresponding to the SST
parameter using the read.coda function (coda). The first argument is the name
of the samples file and the second is the name of the index file. Your new objects
(chain1 and chain2) have class mcmc.

> require(coda)

> chain1 = read.coda("Chain1.txt",

+ "Index.txt", quiet=TRUE)

> chain2 = read.coda("Chain2.txt",

+ "Index.txt", quiet=TRUE)
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Figure 12.13 MCMC from a space–time model of cyclone counts in hexagon one.

To plot the MCMC samples of the SST coefficient in the first hexagon (hexagons
are ordered from southwest to northeast) from both chains, type

> traceplot(chain1[, "sst[1]"], ylim=c(-.3, .7))

> traceplot(chain2[, "sst[1]"], col="red", add=TRUE)

This generates a graph showing the sequence of values (trace plot) from the first
(black) and second (red) chains (Fig. 12.13). Values fluctuate from one iteration to
the next but tend toward a stable distribution after about 3,000 updates. This ten-
dency toward convergence is even more apparent by comparing the two trace plots.
Initially, the values from chain one are quite different from those of chain two, but
after about 4,000 iterations the distributions are visually indistinguishable. From this
analysis, you estimate that convergence requires about 4,000 iterations.
You quantify MCMC convergence with the potential scale reduction factor

(PSRF) proposed by Gelman and Rubin (1992). After convergence, your two chains
starting with different initial conditions should represent samples from the same
distribution. You assess this by comparing the mean and variance of each chain
to the mean and variance of the combined chain. Specifically, with two chains, the
between-chain variance B/n and pooled within-chain varianceW are defined by

B
n
=

1
2− 1

2

∑
j=1

(s̄j. − s̄..)2 (12.10)

and

W =
1

2(n − 1)

2

∑
j=1

n

∑
t=1

(sjt − s̄j.)2 (12.11)

where sjt is the parameter value of the tth sample in the jth chain, s̄j is the mean of the
samples in j, and s̄.. is the mean of the combined chains.
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By taking the sampling variability of the combined mean into account, you get a
pooled estimate for the variance:

V̂ =
n − 1

n
W +

B
n

(12.12)

Then an estimate R̂ for PSRF is obtained by dividing the pooled variance with the
pooled within-chain variance,

R̂ =
V̂
W

=
n − 1

n
+

B
nW

(12.13)

If the chains have not converged, Bayesian credible intervals based on the t-
distribution are too wide and have the potential to shrink by the PSRF. PSRF is
sometimes called the shrink factor.
A value for R̂ is available for each monitored node using the gelman.diag func-

tion (coda). Values substantially above 1 indicate lack of convergence. For example,
to get the PSRF estimate on the SST parameter for the first hexagon, type

> gelman.diag(mcmc.list(chain1[, "sst[1]"],

+ chain2[, "sst[1]"]))

Potential scale reduction factors:

Point est. Upper C.I.

[1,] 1.01 1.04

By default, only the second half of the chain is used. The point estimate indicates near
convergence consistent with the evidence in the trace plots. To see the evolution of R̂
as the number of iterations increase, type

> gelman.plot(mcmc.list(chain1[, "sst[1]"],

+ chain2[, "sst[1]"]))

The plot shows convergence after about 3,000 iterations.
Convergence does not guarantee that your samples have visited all (or even a large

portion) of the posterior density. The speed with which your samples work their way
through the posterior (mixing) depends on how far they advance from one update
to the next. Mixing efficiency is inversely related to the between-sample correlation
decay as a function of sample lag. Sharp decay of the correlation indicates mixing is
efficient.
The autocorrelation function shows the correlation as a function of consecutive

sample lag. Here you use the acf function on the chain to examine the correlation by
typing

> acf(chain1[, "sst[1]"], ci=0, lag.max=2000)

The results for the SST coefficient in hexagon 1 and hexagon 60 are shown in
Figure 12.14. Depending on the hexagon, the decay of the positive correlation drops
below after several hundred samples.

jelsner
Sticky Note
remove "decay as a function of sample lag"

jelsner
Sticky Note
rewrite sentence to read "Low values of correlation at small lag indicate that mixing is efficient."

jelsner
Sticky Note
remove "decay of the positive"

jelsner
Sticky Note
insert "zero"



Elsner: “12˙ELSNER˙CH12” — 2012/9/24 — 19:11 — page 336 — #36

336 BayesianModels

0 500 1500

0.0

0.2

0.4

0.6

0.8

1.0

Lag (iteration)

0 500 1500

Lag (iteration)

Au
to

co
rr

el
at

io
n

0.0

0.2

0.4

0.6

0.8

1.0ba

Au
to

co
rr

el
at

io
n

Figure 12.14 Autocorrelation of the SST coefficient in hexagon (a) 1 and (b) 60.

You use the effective chain size to quantify the decay. Because of the between-
sample correlation, your effective chain size is less than the 5K updates. You use the
effectiveSize function (coda) to estimate the effective chain size by typing

> effectiveSize(chain1[, "sst[1]"])

var1

25

> effectiveSize(chain1[, "sst[60]"])

var1

59.7

The effective size is an estimate of howmany independent samples you have given the
amount of autocorrelation. The slower the decay of the autocorrelation function, the
lower the effective size. For chain one, the effective size on the SST coefficient is 25
for the first hexagon and 60 for hexagon 60.
These numbers are too small to make reliable inferences, so you need more

updates. Your goal is 1,000 independent samples. Since a conservative estimate of
your effective sample size is 25 in 5K updates, you need 200K updates to reach your
goal.

12.4.7 Updates

First return to BUGS. Next create a single chain and generate 205K updates. This
time you monitor both the SST and SOI coefficients. After updating (this will take
several hours),4 you output every 200th sample over the last 200K updates. This is
done with the sample monitor tool by setting beg equal to 5001 and thin equal to
200. Save the index files and chain values from both coefficients and read them into R.

4 200K updates took 10.5 hr on a 2 × 2.66 GHz dual-core Intel Xeon processor running on OS X
version 10.6.8
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Figure 12.15 MCMC trace of the SST coefficients for hexagon (a) one and (b) 60.

> sstChain = read.coda("SSTChain.txt",

+ "SSTIndex.txt", quiet=TRUE)

> soiChain = read.coda("SOIChain.txt",

+ "SOIIndex.txt", quiet=TRUE)

You create a trace plot of your samples for hexagon one by typing

> traceplot(sstChain[, "sst[1]"], ylim=c(-.1, .3))

Note the apparent stationarity (see Fig. 12.15). Also note that since you saved only
every 200th sample, the variation from one value to the next is much higher.
Now you use these samples to make inferences. For example, the probability that

the SST coefficient for hexagon 1 is greater than zero is obtained by typing

> sum(sstChain[, "sst[1]"]>0)/

+ length(sstChain[, "sst[1]"]) * 100

[1] 95.2

You interpret the coefficient of the Poisson regression as a factor increase
(or decrease) in the rate of occurrence per unit of the explanatory variable, given that
the other covariates are held constant. This is a relative risk or the ratio of two prob-
abilities. The relative risk of hurricanes per degree celsius in hexagon 1 is estimated
using the posterior mean as

> exp(mean(sstChain[, "sst[1]"]))

[1] 1.09

A relative risk of one indicates no increase or decrease in occurrence probability rela-
tive to the long-term average. So you interpret the value of 1.09 to mean a 9 percent
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increase per degree celsius and only a 4.8 percent chance that the relative risk is one
(no change).

12.4.8 Relative RiskMaps

Here you map the relative risk of hurricanes. This time you estimate it using the
posterior median and you do this for all hexagons by typing

> RRsst = exp(apply(sstChain, 2, function(x)

+ median(x)))

Next, create a spatial data frame of the relative risk with row names equal to your
hexagon identification numbers.

> RRsst.df = data.frame(RRsst)

> rownames(RRsst.df) = rownames(Wind.count)

> RRsst.pdf = SpatialPolygonsDataFrame(

+ hpg[rownames(RRsst.df)], RRsst.df)

Then choose a color ramp and create a choropleth map.

> al = colorRampPalette(c("#FEE8C8", "#FDBB84",

+ "#E34A33"), space="Lab")

> spplot(RRsst.pdf, col="white", col.regions=al(20),

+ at=seq(1, 1.25, .05), colorkey=list(space="bottom",

+ labels=paste(seq(1, 1.25, .05))),

+ sp.layout=list(l2),

+ sub="Relative Hurricane Risk [/C]")

Relative risk(/°C)

1 1.05 1.1 1.15 1.2 1.25

Relative risk (/s.d.)

1 1.02

ba

1.04 1.06 1.08 1.1

Figure 12.16 Hurricane risk per change in (a) local SST and (b) SOI.
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Figure 12.16 maps the hurricane risk relative to a per degree celsius change in local
SST and a per standard deviation change in SOI. Hurricane occurrence is most sen-
sitive to rising ocean temperatures over the eastern tropical North Atlantic and less
so across the western Caribbean Sea, Gulf of Mexico, and across much of the coast
lines of Central America, Mexico, and the United States. In comparison, hurricane
occurrence is most sensitive to ENSO over much of the Caribbean and less so over
the central and northeasternNorth Atlantic.
This chapter demonstrated Bayesian models for hurricane climate research. We

began by showing how to combine information about hurricane counts from the
modern and historical cyclone archives to get a baseline estimate of future activity
over the next several decades. We then showed how to create a Bayesian model for
seasonal forecasts, where the model is based on anMCMC algorithm that allows you
to exploit the older, less reliable cyclone information. We showed how to create a
consensus model for seasonal prediction based on Bayesian model averaging. The
approach circumvents the need to choose a single “best” model. Finally, we showed
how to create a hierarchical model for exploiting the space–time nature of hurricane
activity. Widespread application of Bayesian hierarchical models will undoubtedly
lead to a better understanding of hurricane climate. In the final chapter, we consider a
few practical applications of our statistical approach to hurricane climatology.

jelsner
Sticky Note
remove quotes from the word "best"




