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10
TIME SERIES MODELS

“A big computer, a complex algorithm and a long time does not equal science.”
—Robert Gentleman

In this chapter, we consider time series models. A time series is an ordered sequence
of numbers with respect to time. In climatology, you encounter time-series data in a
format given by

{h}Tt=1 = {h1,h2, . . . ,hT} (10.1)

where the time t is over a given season, month, week, or day and T is the time series
length. The aim is to understand the underlying physical processes that produced the
series. A trend is an example. Often by simply looking at a time series, you can pick
out a trend that tells you that the process generating the data is changing.
A single time series gives you only one sample from the process. Yet under the

ergodic hypothesis, a single time series of infinite length contains the same informa-
tion (loosely speaking) as the collection of all possible series of finite length. In this
case, you can use your series to learn about the nature of the process. This is analogous
to spatial interpolation encountered by Chapter 9, where the variogram is computed
under the assumption that the rainfall field is stationary.
Here we consider a selection of techniques and models for time series data. We

begin by showing you how to overlay plots as a tool for exploratory analysis. This
is done to compare the variation between two series qualitatively. We demonstrate
large variation in hurricane counts arising from a constant rate process. We then show
techniques for smoothing. We continue with a change-point model and techniques
for decomposing a continuous-valued series.We concludewith a uniqueway to create
a network graph from a time series of counts and suggest a new definition of a climate
anomaly.
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10.1 TIME SERIES OVERLAYS

A plot showing your variables on a common time axis is an informative exploratory
graph. Values from two different series are scaled to have the same relative range
so the covariation in the variables can be compared visually. Here you do this with
hurricane counts and sea-surface temperature (SST). Begin by loading annual.RData.
These data were assembled in Chapter 6. Subset the data for years starting with 1900
and rename the year column.

> load("annual.RData")

> dat = subset(annual, Year >= 1900)

> colnames(dat)[1] = "Yr"

Plot the basin-wide hurricane count by year, then overlay a plot of the North
Atlantic SST. You do this by keeping the current graphics device open with the
new=TRUE switch in the par function.

> par(las=1, mar=c(5, 4, 2, 4) + .1)

> plot(dat$Yr, dat$B.1, xlab="Year",

+ ylab="Hurricane Count", lab=c(10, 7, 20),

+ type="h", lwd=2)

> par(new=TRUE)

> plot(dat$Yr, dat$sst, type="l", col="red", xaxt="n",

+ yaxt="n", xlab="", ylab="", lwd=2)

> axis(4)

> mtext(expression(paste("SST [",degree,"C]")),

+ side=4, line=2.5, las=0)

> legend("topleft", col=c("black", "red"), lty=1,

+ legend=c("Hurricanes","SST"))

You turn off the axis labels in the second plot call and then add them using the axis
function where 4 references the vertical axis on the right side of the graph. Axes are
numbered clockwise starting from the bottom of the plot. The axis is labeled using
the mtext function.
The plot is shown in Figure 10.1. The correspondence between the two series is

clear. There tends to be more hurricanes in periods of higher SST and fewer hurri-
canes in periods of lower SST. You retain the distinction between the two series by
using bars for the discrete counts and lines for the continuous SST values.

10.2 DISCRETE TIME SERIES

Your hurricane counts arise from a rate process that is described as Poisson. More
precisely, the number of occurrences over an interval is quantified using a Poisson
distribution with a rate parameter proportional to the time interval. The counts in
nonoverlapping intervals are independent. Since the rate of hurricanes can change
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Figure 10.1 Hurricane counts and August–October SST anomalies.

from day to day and from year to year, you assume that the process has a rate that is a
function of time (λ(t)).
Note that if you are interested in yearly counts, you focus on modeling the under-

lying yearly rate (more precisely, the integral of the underlying instantaneous rate
over a year). You can integrate the rate over any time period and obtain the hurricane
count over that period. For example, you can integrate to find the expected number
of hurricanes after September 15th.
Here you examine methods for estimating the rate process. You first consider run-

ning averages to get a smoothed estimate of the annual rate. You then consider a
change-point model where the period rate is constant but changes abruptly between
periods. Running averages and change-point models provide a description of your
series, but they are not very useful for predictions. You beginwith a look at interannual
count variability.

10.2.1 Count Variability

The time series of hurricane counts appears to have large interannual variable as seen
in Figure 10.1. But this might simply be a consequence of the randomness in the
counts given the rate. In fact, large variations in small-count processes are often mis-
diagnosed as physically significant. As an example, consider hurricane counts over a
sequence of N years with a constant annual Poisson rate lambda. What is the proba-
bility that you will find at least M of these years with a count less than X (described as
an inactive season) or a count greater than Y (described as an active season)?
Here we write it out in steps using R notation.

1. Assign the probability of the count h less than X or greater than Y as PXY = 1

- ppois(Y) + ppois(X - 1)). In other words, assign it as one minus the
probability that h lies between X and Y, inclusive.

2. Assign an indicator I = 1 for each year with h < X or h > Y.
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3. Let the sum of I have a binomial distribution (Chapter 3) with probability PXY
and N.

4. Let the probability of observing at least M of these years be given as
PM = 1 - pbinom(M - 1, N, PXY)

You create the following function to perform these computations.

> PM = function(X, Y, lambda, N, M){

+ PXY = 1 - diff(ppois(c(X - 1, Y), lambda))

+ return(1 - pbinom(M - 1, N, PXY))

+ }

Arguments for ppois are q (quantile) and lambda (rate) and the arguments for
pbinom are q, size, and prob.
You use your function to answer the following question. Given an annual rate of 6

hurricanes per year (lambda), what is the probability that in a random sequence of
10 years (N) you will find at least 2 years (M) with a hurricane count less than 3 (X) or
greater than 9 (Y)?

> PM(X=3, Y=9, lambda=6, N=10, M=2)

[1] 0.441

Thus you find a 44 percent chance of having 2 years with large departures from the
mean rate.
Your function is handy. It protects you against getting fooled by randomness.

Indeed, the probability that at least 1 year in 10 falls outside the range of ±2 stan-
dard deviations from the mean is 80 percent. This compares to 37 percent for a set of
variables described by a normal distribution and underscores the limitation of using a
concept that is relevant for continuous distributions on count data.
By contrast, if you consider the annual global counts over the period 1981–20061,

you find a mean of 80.7 tropical cyclones per year with a range between 66 and 95.
Assuming the global counts are Poisson, you use your function to determine the prob-
ability that no years have less than 66 or more than 95 tropical cyclones in the 26-year
sample.

> 1 - PM(X=66, Y=95, lambda=80.7, N=26, M=1)

[1] 0.0757

This lowprobability provides suggestive evidence to support the notion that the phys-
ical processes governing global hurricane activity is more regular than Poisson. The
regularity could be due to feedbacks in the climate system. For example, the cumu-
lative effect of many hurricanes over a particular basin might make the atmosphere
less conducive for activity in other basins. Or it might be related to a few governing
mechanism like the North Atlantic Oscillation (Elsner and Kocher, 2000).

1 From Elsner et al. (2008b).
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10.2.2 Moving Average

Amoving average removes year-to-year fluctuation in counts. The assumption is that
of a smoothly varying rate process. You use the filter function to compute running
averages. The first argument in the function is a univariate or multivariate time series
and the second is the filter as a vector of coefficients in reverse time order.
For a moving average of lengthN, the coefficients all have the same value of 1/N.

For example, to compute the 5-year running average of the basin-wide hurricane
counts, type

> ma = filter(dat$B.1, rep(1, 5)/5)

> str(ma, strict.width="cut")

Time-Series [1:111] from 1 to 111: NA NA 4.2 3.8 4..

The output is an object of class ts (time series). Note, the filtering is not performed
on values at the ends of the time series, so NAs are returned. If you use an odd number
of years, then the number of values missing at the start of the filtered series matches
the number of values missing at the end of the series.
Here you create a new function called moveavg and use it to compute the moving

averages of basin counts over 5, 11, and 21 years.

> moveavg = function(X, N){filter(X, rep(1, N)/N)}

> h.5 = moveavg(dat$B.1, 5)

> h.11 = moveavg(dat$B.1, 11)

> h.21 = moveavg(dat$B.1, 21)

Then plot the moving averages on top of the observed counts.

> plot(dat$Yr, dat$B.1, ylab="Hurricane Count/Rate",

+ xlab="Year", col="grey", type="h", lwd=1)

> cls = c("grey", "red", "blue", "green")

> lg = c("Count", "5-Yr Rate", "11-Yr Rate",

+ "21-Yr Rate")

> lines(dat$Yr, h.5, col="red", lwd=2)

> lines(dat$Yr, h.11, col="blue", lwd=2)

> lines(dat$Yr, h.21, col="green", lwd=2)

> legend("topleft", lty=1, lwd=2, col=cls, legend=lg)

Figure 10.2 shows the results. Note the reduction in the year-to-year variability as
the length of the moving average increases. Note also that the low-frequency varia-
tion is not affected. Check this yourself by comparing the means (the mean is the
zero frequency) of themoving averages. Thus amoving average is a low-pass “boxcar”
filter.
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Figure 10.2 Hurricane counts and rates.

10.2.3 Seasonality

Hurricanes are seasonal. Very few occur before July, September is the most active
month, and the season is typically over byNovember. In general, the ocean is too cool
and the wind shear too strong during the months of January through May and from
November through December. Ocean warmth peaks in early September. Seasonality
is evident in plots showing the historical number of hurricanes that have occurred on
each day of the year. Here we show you how to model this seasonality to produce a
probability of hurricane occurrence as a function of the day of year.
You use the hourly interpolated best-track data described in Chapter 6 and saved

in best.use.RData. The data span the years from 1851 to 2010. Import the data frame
and subset on hurricane-force wind speeds.

> load("best.use.RData")

> H.df = subset(best.use, WmaxS >= 64)

> head(H.df)

Sid Sn SYear name Yr Mo Da hr lon lat

1 1 1 1851 NOT NAMED 1851 6 25 0 -94.8 28

1.1 1 1 1851 NOT NAMED 1851 6 25 1 -94.9 28

1.2 1 1 1851 NOT NAMED 1851 6 25 2 -95.0 28

1.3 1 1 1851 NOT NAMED 1851 6 25 3 -95.1 28

1.4 1 1 1851 NOT NAMED 1851 6 25 4 -95.2 28

1.5 1 1 1851 NOT NAMED 1851 6 25 5 -95.3 28

Wmax WmaxS DWmaxDt Type Shour maguv diruv jd

1 80.0 79.8 0.0860 * 0 5.24 271 175

1.1 80.0 79.9 0.0996 * 1 5.25 271 175

1.2 80.1 80.0 0.1114 * 2 5.26 271 175

1.3 80.1 80.2 0.1197 * 3 5.29 270 175

1.4 80.1 80.3 0.1227 * 4 5.32 270 175

1.5 80.0 80.4 0.1187 * 5 5.37 269 175
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Next, create a factor variable from the day-of-year column (jd).The day of year starts
on the first of January. You use only the integer portion as the rows correspond to
separate hours.

> jdf = factor(trunc(H.df$jd), levels=1:365)

The vector contains the day of year (1 through 365) for all 83,151 hurricane hours in
the data set. You could use 366, but there are no hurricanes on December 31 during
any leap year over the period of record.
Next, use the table function on the vector to obtain total hurricane hours by day

of year and create a count of hurricane days by dividing the number of hours and
rounding to the nearest integer.

> Hhrs = as.numeric(table(jdf))

> Hd = round(Hhrs/24, 0)

The vector Hd contains the number of hurricane days for each day of the year.
A plot of the raw counts shows that the variation from day to day is large. Here you

create a model that smooths these variations. This is done with the gamlss function
(see Chapter 8) in the gamlss package (Rigby and Stasinopoulos, 2005). You model
your counts using a Poisson distribution with the logarithmic link as a function of day
of year.

> require(gamlss)

> julian = 1:365

> sm = gamlss(Hd ˜ pb(julian), family=PO, trace=FALSE)

Here you use a nonparametric smoothing function on the Julian day. The function is
a penalized B-spline (Eilers and Marx, 1996) and is indicated as pb() in the model
formula. The penalized B-spline is an extension of a Poisson regression that conserves
the mean and variance of the daily hurricane counts and that has a polynomial curve
as the limit. The Poisson distribution is specified in the family argument with PO.
Although there are days with hurricanes outside themain season,your interest cen-

ters on the months of June through November. Here you create a sequence of Julian
days defining the hurricane season and convert them to dates.

> hs = 150:350

> doy = as.Date("1970-12-31") + hs
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Figure 10.3 Seasonal occurrence of hurricanes.

You then convert the hurricane days to a relative frequency to allow for a probabilistic
interpretation. This is done for the actual counts and the smoothed modeled counts.

> ny = (2010 - 1851) + 1

> Hdm = Hd[hs]/ny

> smf = fitted(sm)[hs]/ny

Finally, you plot the modeled and actual daily frequencies by typing

> plot(doy, Hdm, pch=16, xlab="",

+ ylab="Frequency (days/yr)")

> lines(doy, smf, lwd=2, col="red")

The results are shown in Figure 10.3. Points show the observed relative frequency
of hurricanes by day of year. The red line is the fitted values of a model for the
frequencies. Horizontal tic marks indicate the first day of the month.e
On average, hurricane activity increases slowly until the beginning of August as

the ocean warms and wind shear subsides. The increase is more pronounced start-
ing in early August and peaks around the first or second week in September. The
decline starting inmid-September is somewhat less pronounced than the increase and
is associated with ocean cooling. There is a minor secondary peak during the middle
of October related to hurricane genesis over the western Caribbean Sea. The cli-
mate processes that make this part of the basin relatively active are likely somewhat
different than the processes occurring during the peak of the season.

10.3 CHANGE POINTS

Hurricane activity can change from inactive to active abruptly. In this case, a change-
pointmodel is appropriate for describing the time series.Here a change point refers to
a jump in the rate of activity from one time to the next. The underlying assumption is
a discontinuity in the rates. For example, suppose hurricanes suddenly become more
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frequent in the years 1934 and 1990, then the model would still be Poisson, but with
different rates in the periods (epochs) 1900–1933, 1934–1989, and 1990–2010.Here
you use the annual data loaded in §10.1 to build a change-point model.

10.3.1 Counts

The simplest model is one with a single change point. For instance, you check to see
whether a model that has a rate change during a given year is better than a model
that does not have a change during that year. Thus you have two models: one with a
change point and the other without one. To make a choice, you check to see which
model has the lower Schwarz Bayesian Criterion (SBC).
The SBC is proportional to −2 log[p(data|model)], where p(data|model) is

the probability of the data given the model (see Chapter 4). This is done using
the gamlss function in the gamlss package. Make the package available and obtain
the SBC value for each of three models by typing

> require(gamlss, quiet=TRUE)

> gamlss(B.1 ˜ 1, family=PO, data=dat,

+ trace=FALSE)$sbc

[1] 529

> gamlss(B.1 ˜ I(Yr >= 1910), family=PO, data=dat,

+ trace=FALSE)$sbc

[1] 529

> gamlss(B.1 ˜ I(Yr >= 1940), family=PO, data=dat,

+ trace=FALSE)$sbc

[1] 515

Here the Poisson family is given as PO with the logarithm of the rate as the default
link (Stasinopoulos and Rigby, 2007). The first model is one with no change point.
The next two are change-point models with the first having a change point in the
year 1910 and the second having a change point in 1940. The change-point models
use the indictor function I to assign a TRUE or FALSE to each year based on logical
expression involving the variable Yr.
The SBC value is 528.5 for the model with no change points. This compares with

an SBC value of 528.7 for the change-point model where the change occurs in 1910
and a value of 514.8 for the change-point model where the change occurs in 1940.
Since the SBC is lower in the latter case, 1940 is a candidate year for a change point.
You apply this procedure successively where each year gets considered in turn as a

possible change point. You then plot the SBC as a function of year (Fig. 10.4). The
horizontal line is the SBC for a model with no change points and tick marks are local
minimum of SBC. Here the SBC for the model without a change point is adjusted by
adding 2 log(20) to account for the prior possibility of five or six equally likely change
points over the period of record.Here you find four candidate change points based on
local minima of the SBC. The years are 1995, 1948, 1944, and 1932.
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Figure 10.4 Schwarz Bayesian criterion (SBC) for change points.

You assume a priori that there is atmost one change point per decade and that
the posterior probability of the intercept model is 20 times that of the change-point
model. This gives you 12 possible models (1995 only, 1995 & 1948, 1995 & 1948 &
1932, etc.) including the intercept-only model but excludes models with both 1944
and 1948 as the changes occur too close in time.
Next, you estimate the posterior probabilities for each of the 12models using

Pr(Mi|data)= exp(−.5 · SBC(Mi))
∑12
j=1 exp(−.5 · SBC(Mj))

(10.2)

where the models are given by Mi, for i = 1, . . . ,12. The results are shown in
Table 10.1. The top three models have a total posterior probability of 80%. These

Table 10.1 Model posterior probabilities frommost (top) to least probable.

Formula Probability

X10 B.1˜I(Yr>=1995)+ I(Yr>=1932) 0.43
X6 B.1˜I(Yr>=1995)+ I(Yr>=1944) 0.20
X4 B.1˜I(Yr>=1995)+ I(Yr>=1948) 0.18
X12 B.1˜I(Yr>=1995)+ I(Yr>=1948)+ I(Yr>=1932) 0.07
X14 B.1˜I(Yr>=1995)+ I(Yr>=1944)+ I(Yr>=1932) 0.06
X3 B.1˜I(Yr>=1948) 0.02
X5 B.1˜I(Yr>=1944) 0.01
X2 B.1˜I(Yr>=1995) 0.01
X9 B.1˜I(Yr>=1932) 0.01
X11 B.1˜I(Yr>=1948)+ I(Yr>=1932) 0.01
X13 B.1˜I(Yr>=1944)+ I(Yr>=1932) 0.00
X1 B.1˜1 0.00
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Table 10.2 Best model coefficients and standard errors.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.9063 0.4101 9.53 0.0000
I(Yr>= 1995)TRUE 2.5069 0.6494 3.86 0.0002
I(Yr>= 1932)TRUE 1.6493 0.5036 3.28 0.0014

models all include 1995 with 1932, 1944, and 1948 competing as the second most
important change-point year. You can select any of the models, but it makes sense to
choose one with a high posterior probability. Note the weaker support for the single
change-point models and even less support for the no change-point model.
The single best model has change points in 1932 and 1995. The coefficients of this

model are shown in Table 10.2. The model predicts a rate of 3.9 hur/yr in the period
1900–1931. The rate jumps to 6.4 hur/yr in the period 1931–1994 and jumps again
to 8.1 in the period 1995–2010.

10.3.2 Covariates

To better understand what might be causing the shifts in hurricane activity, here you
include known covariates in the model. The idea is that if the shift is no longer signifi-
cant after adding a covariate, then you conclude that the likely causal mechanism is a
change in climate.
The two important covariates for annual basin-wide hurricane frequency are SST

and the SOI as used throughout this book. You first fit and summarize a model using
the two change points and these two covariates.

> model1 = gamlss(B.1 ˜ I(Yr >= 1932) + I(Yr >= 1995) +

+ sst + soi, family=PO, data=dat, trace=FALSE)

> summary(model1)

You find that the change point at 1995 has the largest p-value among the variables.
You also note that the model has an SBC of 498.5.
You consider whether themodel can be improved by removing the change point at

1995, so you remove it and refit the model.

> model2 = gamlss(B.1 ˜ I(Yr >= 1932)

+ + sst + soi, family=PO, data=dat, trace=FALSE)

> summary(model2)

With the reduced model, you find all variables statistically significant (p-value less
than 0.1) and the model has an SBC of 496.3, which is lower than the SBC of your
first model that includes 1995 as a change point.
Thus you conclude that the shift in the rate at 1995 is more likely the result of a

synchronization (Tsonis et al., 2006) of the effects of SST and ENSO on hurricane
activity than is the shift in 1932. The shift in 1932 is important after including SST
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and ENSO influences providing evidence that the increase in activity at this time is
likely due, at least in part, to improvements in observing technologies.
A change-point model is useful for detecting rate shifts caused by climate and

observational improvements.When used together with climate covariates, it can help
you differentiate between these two possibilities. However, change-point models are
not particularly useful for predicting when the next change will occur.

10.4 CONTINUOUS TIME SERIES

The SST temperature, the SOI, and the NAO are continuous time series. Values fluc-
tuate over a range of scales often without abrupt changes. In this case, it can be useful
to split the series into a few components where each component has a smaller range
of scales.
Here your goal is to decompose the SST time series as an initial step in creating a

time-series model. The model can be used to make predictions of future SST values.
Predicted SST values are subsequently used in your hurricane frequency model to
forecast the probability of hurricanes (Elsner et al., 2008a).
You return to your monthly SST values over the period 1856–2010. As you did

with the NAO values in Chapter 5, you input the data and create a continuous-valued
time series object (sst.ts) containing monthly SST values beginning with January
1856.

> SST = read.table("SST.txt", header=TRUE)

> sst.m = as.matrix(SST[6:160, 2:13])

> sst.v = as.vector(t(sst.m))

> sst.ts = ts(sst.v, frequency=12, start=c(1856, 1))

First you plot your SST time series by typing

> plot(sst.ts, ylab="SST (C)")

The graph shows that the SST is dominated by interannual variability (Fig. 10.5). The
ocean is coldest in February and March and warmest in August and September. The
average temperature duringMarch is 18.6◦C and during August is 23.1◦C. There also
appears to be a trend toward greater warmth, although it is difficult to see because of
the larger interannual variations.
The SST times series can be decomposed into components using the stl func-

tion. The function accepts a time series object as its first argument and the type of
smoothing window is specified through the s.window argument.

> sdts = stl(sst.ts, s.window="periodic")

The seasonal component is found by a local regression smoothing of the monthly
means. The seasonal values are then subtracted, and the remainder of the series
smoothed to find the trend. The overall time-series mean value is removed from the
seasonal component and added to the trend component. The process is iterated a few
times. What remains is the difference between the actual monthly values and the sum
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Figure 10.5 Monthly raw and component SST values.

of the seasonal and trend components. Note that if you have change points in your
time series, you can use the bfast package and the bfast function to decompose
your time series. In this case, the trend component has the change points.
The raw and component series are plotted in Figure 10.5. The data are prepared as

follows. First a vector of dates is constructed using the seq.dates function from the
chron package. This allows you to display the graphs using a scale that correspond to
real dates.

> require(chron)

> date = seq.dates(from="01/01/1856", to="12/31/2010",

+ by="months")

> #dates = chron(dates, origin=c(1, 1, 1856))

Next, a data frame is constructed that contains the vector of dates, the raw
monthly SST time series, and the corresponding components from the seasonal
decomposition.

> datw = data.frame(Date=as.Date(date),

+ Raw=as.numeric(sst.ts),

+ Seasonal=as.numeric(sdts$time.series[, 1]),

+ Trend=as.numeric(sdts$time.series[, 2]),

+ Residual=as.numeric(sdts$time.series[, 3]))

> head(datw)

Date Raw Seasonal Trend Residual

1 1856-01-01 19.1 -1.621 20.7 0.02587

2 1856-02-01 18.6 -2.060 20.7 -0.04036
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3 1856-03-01 18.7 -2.068 20.7 0.02453

4 1856-04-01 19.0 -1.640 20.7 -0.05631

5 1856-05-01 19.9 -0.756 20.7 -0.01318

6 1856-06-01 21.2 0.478 20.7 0.00159

Here the data are in the “wide” form like a spreadsheet. To make them easier to
plot as separate time-series graphs, you create a “long” form of the data frame with
the melt function in the reshape package. The function melds your data frame into
a form suitable for casting (Wickham, 2007). You specify the data frame and your
Date column as your id variable. The function assumes that remaining variables are
measure variables (non id variables) with the column names turned into a vector of
factors.

> require(reshape)

> datl = melt(datw, id="Date")

> head(datl); tail(datl)

Date variable value

1 1856-01-01 Raw 19.1

2 1856-02-01 Raw 18.6

3 1856-03-01 Raw 18.7

4 1856-04-01 Raw 19.0

5 1856-05-01 Raw 19.9

6 1856-06-01 Raw 21.2

Date variable value

7435 2010-07-01 Residual 0.0807

7436 2010-08-01 Residual 0.1489

7437 2010-09-01 Residual 0.0601

7438 2010-10-01 Residual -0.0501

7439 2010-11-01 Residual -0.1157

7440 2010-12-01 Residual -0.1666

Here you make use of the ggplot2 package (see Chapter 5) to create a facet
grid to display your time-series plots with the same time axis. The qplot function
graphs the decomposed time-series values grouped by variable. The argument
scale="free_y" allows the y axes to have different scales. This is important as
the decomposition results in a large seasonal component centered on zero, while the
trend component is smaller.

> require(ggplot2)

> qplot(Date, value, data=datl, geom="line",

+ group=variable) + facet_grid(variable ˜.,

+ scale="free_y")

The monthly time-series components are shown in Figure 10.5. The observed (raw)
values are shown in the top panel. The seasonal component, trend component, and
residuals are also shown in separate panels on the same time-series axis. Temperatures
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increase by more than 0.5◦C over the past 100 years. But the trend is not monotonic.
The residuals show year-to-year variation generally between −0.15 and +0.15◦C
with somewhat larger variation before about 1871.
You can build separate time series models for each component. For example, an

autoregressive moving average (ARMA) model can be built for the residual com-
ponent (Rt) be used. An ARMA model with p autoregressive terms and q moving
average terms [ARMA(p, q)] is given by

Rt =
p

∑
i=1

φiRt−i+
q

∑
i=1

θiεt−i+ εt (10.3)

where the φi’s and the θi’s are the parameters of the autoregressive and moving aver-
age terms, respectively and εt ’s are random white noise assumed to be described by
independent normal distributions with zero mean and variance σ 2. For the trend
component, an ARIMA model is more appropriate. An ARIMA model generalizes
the ARMAmodel by removing the nonstationarity through an initial differencing step
(the “integrated” part of the model).
Here you use the ar function to determine the autoregressive portion of the series

using the AIC.

> ar(datw$Trend)

Call:

ar(x = datw$Trend)

Coefficients:

1 2 3 4 5 6

1.279 -0.058 -0.101 -0.062 -0.045 -0.032

7 8 9 10 11

-0.008 -0.023 0.010 -0.034 0.067

Order selected 11 sigmaˆ2 estimated as 0.000298

Result shows an autoregressive order of 11 months. Continuing, you assume that the
integrated andmoving average orders are both one.

> model = arima(datw$Trend, order=c(11, 1, 1))

You then use the model to make monthly forecasts out to 36 months using
the predict method. Predictions are made at times specified by the newxreg
argument.

> nfcs = 36

> fcst = predict(model, n.ahead=nfcs)
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Figure 10.6 Observed and forecast SST trend component.

You plot the forecasts along the corresponding date axis by typing

> newdate = seq.dates(from="01/01/2011",

+ to="12/01/2013", by="months")

> plot(newdate, fcst$pred, type="l", ylim=c(21, 21.5))

The last 5 years of SST trend and the 36-month forecast are shown in Figure 10.6. The
observed values are in black and the forecast values are in red. A 95 percent confidence
band is shown in gray. Here you use the same scale. The band is quite large after a
few months. A forecast of the actual SST must include forecasts for the seasonal and
residual components as well.

10.5 TIME-SERIES NETWORK

Here, we show you an interesting newway to characterize a time series. You first map
the series to a network using geometry and then employ tools from graph theory to
get a unique perspective of your data.
Network analysis is the application of graph theory. Graph theory is the study

of mathematical structures used to model relations between objects. Objects and
relations can be many things with the most familiar being people and friendships.
Network analysis was introduced into climatology by Tsonis and Roebber (2004).

They used values of geopotential height on a spatial grid and the relations were based
on correlation. Here you use network analysis to examine year-to-year relations in
hurricane activity. The idea is new and requires mapping a time series to a network
(Lacasa et al., 2008). The presentation here follows the work of Elsner et al. (2009).

10.5.1 Time Series Visibility

How can a time series of hurricane counts be represented as a network? Consider the
plot in Figure 10.7. The time series of U.S. hurricane counts forms a discrete land-
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Figure 10.7 Visibility landscape for hurricane counts.

scape. A bar is connected to another bar if there is a line of sight (visibility line) that
allows the bars to “see” each other. Here visibility lines are drawn for all 10 bars. It
is clear that 1869 by virtue of its high hurricane count (4) can see 1852, 1854, 1860,
1861, 1867, 1868, and 1870, while 1868 with its zero count can see only 1867 and
1869. Lines do not cut through bars. In this way, each year in the time series is linked
in a network. The nodes are the years and the links (edges) are the visibility lines.
More formally, let ha be the hurricane count for year ta and hb the count for year tb,

then 2 years are linked if for any other year ti with count hi

hi ≤ hb+ (ha − hb)
tb − ti
tb − ta

(10.4)

By this definition, each year is visible to at least its nearest neighbors (the year
before and the year after), but not itself. The network is invariant under rescaling the
horizontal or vertical axes of the time series as well as under horizontal and vertical
translations (Lacasa et al., 2008).
In network parlance, years are nodes and the visibility lines are the links (or edges).

The network arises by releasing the years from chronological order and treating them
as nodes linked by visibility lines. Herewe see that 1869 is well connected, while 1853
is not. Years featuring many hurricanes generally result in more links, especially if
neighboring years have relatively few hurricanes.This can be seen by comparing 1853
with 1858. Both years have only a single hurricane, but 1858 is adjacent to years that
also have a single hurricane so it is linked to four other years. By contrast, 1853 is next
to 2 years each with three hurricanes so it has the minimum number of two links. The
degree of a node is the number of links connected to it.
The function get.visibility available in get.visibility.R computes the visi-

bility lines. It takes a vector of counts as input and returns three lists: one containing
the incidence matrix (sm), another a set of node edges (node), and the third a degree
distribution (pk), which indicate the number of yearswith k number of edges. Source
the code and compute the visibility lines by typing,
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> source("get.visibility.R")

> vis = get.visibility(annual$US.1)

10.5.2 Network Plot

You use the network function from the network package (Butts et al., 2011) to
create a network object from the incidence matrix by typing

> require(network)

> net = network(vis$sm, directed=FALSE)

Then use the plot method for network objects to graph the network.

> plot(net, label=1851:2010, label.cex=.6,

+ vertex.cex=1.5, label.pos=5, edge.col="grey")

The results are shown in Figure 10.8. Node color indicates the number of links
(degree) going from light purple (few) to red. Here the placement of years on the
network plot is based on simulated annealing (Kamada and Kawai, (1989)), and the
nodes are colored, based on the number of edges. Years with the largest number of
edges are more likely to be found in dense sections of the network and are colored
dark red. Years with fewer edges are found near the perimeter of the network and are
colored light purple.
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Figure 10.8 Visibility network of U.S hurricanes.
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The sna package (Butts, 2010) contains functions for computing properties of
your network. First create a square adjacency matrix where the number of rows is the
number of years and each element is a zero or one depending on whether the years
are linked and with zeros along the diagonal (a year is not linked with itself). Then
compute the degree of each year indicating the number of years it can see and find
which years can see the farthest.
The year with the highest degree is 1886 with 34 links. Two other years with high

degree include 1933with 31 links and 1985with 28 links. Other relatively highly con-
nected years are 1893, 1950 1964, and 1906, in that order. The average degree is 6.6,
but the degree distribution is skewed so this number says little about a typical year.

10.5.3 DegreeDistribution and Anomalous Years

The total number of links in the network (sum of the links over all nodes) is 1,054.
There are 160 nodes, so 20 percent of the network consists of 32 of them. If you rank
the nodes by the number of links, you find that the top 20 percent account for 40
percent of the links.
You plot the degree distribution of your network by typing

> plot(vis$pk$k, cumsum(vis$pk$P), pch=16, log="x",

+ ylab="Proportion of Years With k or Fewer Links",

+ xlab="Number of Links (k)")

The distribution (Fig. 10.9) is the cumulative percentage of years with k or fewer links
as a function of the number of links. The horizontal axis is plotted using a log scale.
Just over 80 percent of all years have 10 or fewer links, and over 50 percent have 5 or
fewer. Although the degree distribution is skewed to the right, it does not appear to
represent a small-world network (power-law distribution).
We perform a Monte Carlo (MC) simulation by randomly drawing counts from

a Poisson distribution with the same number of years and the same hurricane rate
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Figure 10.9 Degree distribution of the visibility network.



Elsner: “10˙ELSNER˙CH10” — 2012/9/24 — 19:20 — page 272 — #20

272 Time Series Models

as the observations. A visibility network is constructed from the random counts and
the degree distribution computed as before. The process is repeated 1,000 times after
which the median and quantile values of the degree distributions are obtained. The
median distribution is shown as a red line in Figure 10.9 and the 95 percent confidence
interval shown as a gray band. Results indicate that the degree distribution of your
hurricane count data does not deviate significantly from the degree distribution of a
Poisson random time series.
However, it does suggest a new way to think about anomalous years. Years are

anomalous not in a statistical sense of violating a Poisson assumption, but in the sense
that the temporal ordering of the counts identifies a year that is unique in that it has
a large count but is surrounded before and after by years with low counts. Thus we
contend that node degree is a useful indicator of climatologically anomalous year.
That is, a year that stands above most of the other years, but particularly above its
“neighboring” years represents more of an anomaly in a physical sense than does a
year that is simply well above the average. Node degree captures information about
the frequency of hurricanes for a given year and information about the relationship
of that frequency to the frequencies over the given year’s recent history and near
future.
The relationship between node degree and the annual hurricane count is tight but

not exact. Years with a low number of hurricanes are ones that are not well connected
to other years, while years with an above-normal number are ones that are more con-
nected on average. The Spearman rank correlation between year degree and year
count is 0.73. But this is largely a result of low count years. The correlation drops
to 0.48 when considering only years with more than two hurricanes. Thus high count
is necessary but not sufficient for characterizing the year as anomalous, as perhaps it
should be.

10.5.4 GlobalMetrics

Global network metrics are used to compare different data sets. One example is the
diameter of the network as the length of the longest geodesic path between any two
years for which a path exists. A geodesic path (shortest path) is a path between two
years such that no shorter path exists. For instance, in Figure 10.7, you see that
1861 is connected to 1865 directly and through a connection with 1862. The direct
connection is a path of length one while the connection through 1862 is a path of
length two.
The igraph package (Csardi and Nepusz, 2006) contains functions for computing

network analytics. To find the diameter of your visibility network, load the package,
create the network (graph) from the list of edges, then use the diameter function.
Prefix the function name with the package name and two colons to avoid a conflict
with the same name from another loaded package.

> require(igraph)

> vis = get.visibility(annual$US.1)
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> g = graph.edgelist(vis$sm, directed=FALSE)

> igraph::diameter(g)

[1] 5

The result indicates that any 2 years are separated by at most 5 links, although there is
more than one such geodesic.
Transitivity measures the probability that the adjacent nodes are themselves con-

nected. Given that year i can see years j and k, what is the probability that year j can
see year k? In a social network, transivity indicates the likelihood that any two of your
friends are themselves friends. To compute the transitivity for your visibility network,
type

> tran = transitivity(g)

> round(tran, 3)

[1] 0.468

The transitivity tells you that there is a 46.8 percent chance that two adjacent nodes
of a given node are connected. The higher the probability, the greater the network
density. The visibility network constructed from Gulf hurricane counts has a transi-
tivity of 0.563, which compareswith a transitivity of 0.479 for the network constructed
from Florida counts. The network density is inversely related to interannual variance,
but this rather large difference provides some evidence to support clustering of hur-
ricanes in the vicinity of Florida relative to the Gulf coast region (see Chapter 11).
A-nMC simulation would help you interpret the difference against the backdrop of
random variations.
Another global property is the minimum spanning tree. A tree is a connected net-

work that contains no closed loops. By “connected,” we mean that every year in
the network is reachable from every other year via some path through the network
(Newman, 2010). A tree is said to span if it connects all the years together. A net-
work may have more than one spanning tree. The minimum spanning tree is the one
with the fewest number of edges. A network may contain more than one minimum
spanning tree. You compute the minimum spanning tree by typing

> mst = minimum.spanning.tree(g)

> net = network(get.edgelist(mst))

The result is an object of class igraph. This is converted to a network object by
specifying the edge list in the network function. You plot the network tree by
typing

> plot(net)

The graph is shown in Figure 10.10, where the nodes are labeled with their corre-
sponding years and are colored according to the level of “betweenness.” Arrows point
toward later years. The node betweenness (or betweenness centrality) is the number
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Figure 10.10
Minimum spanning
tree of the hurricane
visibility network.

of geodesics (shortest paths) going through it. By definition, the minimum spanning
tree must have a transitivity of zero. You check this by typing

> transitivity(mst)

[1] 0

In summary, the visibility network is the set of years as nodes together with links
defined by a sight line on the time series graph such that the line does not intersect
a count bar. Analysis of the topological properties of the network, like betweenness,
provide new insights into the relationship between hurricanes and climate.
This chapter showed you some methods and models for working with time-series

data. We began by showing you how to overlay time-series plots. We then discussed
the nature of discrete time series and showed how to compute moving averages and
how to create a model for describing the day-to-day variation in hurricane activ-
ity. Next we showed how to analyze and model count data for change points and
how to interpret the shifts in light of climate variability confounded by technological
advances. We then looked at ways to analyze and model continuous time series. We
showed how to decompose a series into its component parts and how to model the
nonseasonal part with an ARMAmodel. We finished with a novel way to construct a
network from time-series counts. We showed howmetrics from the network provide
insight into hurricane climatology. In the next chapter, we consider ways to analyze
andmodel hurricane clusters.




