9

SPATIAL MODELS

“Design is a question of substance, not just form.”
—Adriano Olivetti

In Chapter 7, annual counts were used to create rate models, and in Chapter 8, lifetime
maximum winds were used to create intensity models. In this chapter, we show you
how to use cyclone track data together with climate field data to create spatial models.
Spatial models make use of location information in data. Geographic coordinates
locate the hurricane’s center on the surface of the earth and wind speed provides
an attribute. Spatial models make use of location separate from attributes. Given a
common spatial framework, these models can accommodate climate data including
indices (e.g., North Atlantic Oscillation) and fields (e.g., sea-surface temperature).

9.1 TRACK HEXAGONS

Here, we show you how to create a spatial framework for combining hurricane data
with climate data. The method tessellates the basin with hexagons and populates them
with local cyclone and climate information (Elsner et al,, 2012).

9.1.1 Spatial Points Data Frame

In Chapter S, you learned how to create a spatial data frame using functions from the
sp package (Bivand et al., 2008). Let us review. Here you are interested in wind speeds
along the entire track for all tropical storms and hurricanes during the 2005 North
Atlantic season. You begin by creating a data frame from the best.use.RData file, where

you subset on year and wind speed and convert the speed to meters per second.

> load("best.use.RData")
> W.df = subset (best.use, Yr==2005 & WmaxS >= 34

221

Elsner: “09'ELSNER CH09” — 2012/9/24 — 19:14 — page 221 — #1

222 Spatial Models

+ & Type::H*H)
> W.dfSWmaxS = W.dfS$SWmaxS *» .5144

The asterisk @ Type indicates a tropical cyclone as opposed to a tropical wave or
extratropical cyclone. The number of rows in your data frame is the total number of
cyclone hours (3,010), and you save this by typing

> ch = nrow(w.df)

Next, assign the lon and lat columns as spatial coordinates using the
coordinates function (sp). Finally, make a copy of your data frame, keeping only
the spatial coordinates and the wind speed columns.

> require (sp)

> W.sdf = W.df[c("lon", "lat", "WmaxS")]
> coordinates (W.sdf) = c("lon", "lat")

>

str (W.sdf, max.level=2, strict.width="cut")

Formal class 'SpatialPointsDataFrame' [package "sp"..

..@ data :'data.frame': 3010 obs. of 1 wvar..

.@ coords.nrs : int [1:2] 1 2

.@ coords : num [1:3010, 1:2] -83.9 -83.9 -8..
.- attr(x, "dimnames")=List of 2

.@ bbox : num [1:2, 1:2] -100 11 -12.4 44.2
.- attr(x, "dimnames")=List of 2

.@ projidstring:Formal class 'CRS' [package "sp"]..

The result is a spatial points data frame with five slots. The data slot is a data frame
and contains the attributes (here only wind speed). The coordinate (coord) slot
contains the longitude and latitude columns from the original data frame and the
coordinate numbers (here two spatial dimensions) are given in the coords.nrs
slot. The bounding box (bbox) slot is a matrix containing the maximal extent of the
hurricane positions as defined by the lower left and upper right longitude/latitude
coordinates.

A summary of the information in your spatial points data frame is obtained by

typing

> summary (W.sdf)
Object of class SpatialPointsDataFrame
Coordinates:
min max
lon -100 -12.4
lat 11 44.2
Is projected: NA
projdstring : [NA]
Number of points: 3010

Elsner: “09'ELSNER CH09” — 2012/9/24 — 19:14 — page 222 — #2

jelsner
Sticky Note
remove "on"

223 Track Hexagons

Data attributes:
Min. 1lst Qu. Median Mean 3rd Qu. Max.
17.5 23.7 29.5 33.3 38.0 80.2

Again, there are 3,010 cyclone hours. The projection (proj4string) slot contains
an NA character indicating that it has not yet been specified.

You give your spatial data frame a coordinate reference system using the
CRS function. Here you specify a geographic reference (intersections of parallels
and meridians) as a character string in an object called 11_crs, then use the

proj4string function to generate a CRS object and assign it to your spatial data

frame.
> 11 = "+proj=longlat +datum=WGS84"
> proj4string(W.sdf) = CRS(11)

Check this slot by typing

> slot(W.sdf, "projdstring")
CRS arguments:

+proj=longlat +datum=WGS84 +ellps=WGS84
+towgs84=0,0,0

Next, you transform the geographic CRS into a Lambert conformal conic (LCC)
planar projection using the parallels 30 and 60°N and a center longitude of 60°W.
First save the reference system as a CRS object and then use the spTransform
function from the rgdal package.

> lcc = "+proj=lcc +lat_1=60 +lat_2=30 +lon_0=-60"
> require(rgdal)
> W.sdf = spTransform(W.sdf, CRS(lcc))
> bbox (W.sdf)
min max
lon -3999983 3987430
lat 1493807 5521312

The coordinates are now planar rather than geographical, although the coordinate
names remain the same (lon and lat). Projection of the hurricane locations to a

plane makes it easy to perform distance calculations.

9.1.2 Hexagon Tessellation

Next, you construct a hexagon tessellation of the cy tracks. This is done by
first situating points representing a staggered grid a d then drawing hexagon
boundaries around each grid point. You create the grid points inside the bounding
box defined by your spatial points data frame using the spsample function. Here
you specify the number of points, but the actual number will vary depending on the
bounding box. You expand the bounding box by multiplying each coordinate value

Elsner: “09'ELSNER CH09” — 2012/9/24 — 19:14 — page 223 — #3

jelsner
Sticky Note
remove "and"

224 Spatial Models

by 20 percent and use an offset vector to fix the position of the grid point, over the
tracks.

> hpt = spsample(W.sdf, type="hexagonal", n=250,
+ bb=bbox (W.sdf) * 1.2, offset=c(1l, -1))

The expansion and offset values require a bit of trial and error. The methods used in
spatial sampling function assume that the geometry has planar coordinates, so your
spatial data object should not have geographic coordinates.

Next, call the function to convert the points to hexagons. The more points, the
smaller the area of each hexagon.

> hpg = HexPoints2SpatialPolygons (hpt)

The number of polygons generated and the area of each polygon is obtained by
typing

> np = length (hpg@polygons)

> area = hpg@polygons[[1l]]@area
> np; area

[1] 228

[1] 2.14e+11

This results in 228 equal-area hexagons. The length unit is meters. To convert the
area from square meters to square kilometers, multiply by 10~. Thus the area of each
hexagon is approximately 213,961 km?.

9.1.3 Overlays

With your hexagons and cyclone locations having the same projection, you now
obtain the maximum intensity and number of observations per hexagon. The func-
tion over combines points (or grids) and polygons by performing point-in-polygon
operations on all point—polygon combinations. First you obtain a vector containing
the hexagon identification number for each hourly cyclone observation by typing

> hexid = over (x=W.sdf, y=hpg)

The length of the vector is the number of hourly observations. Not all hexagons have
cyclones, so you subset your spatial polygons object keeping only those that do.

> hpg = hpglunique (hexid)]

Next, you create a data frame with a single column listing the maximum wind speed
over the set of all cyclone observations in each hexagon.

> int = over (x=hpg, y=W.sdf, fn=max)
> colnames (int) = c("WmaxS")
> head (int)

Elsner: “09'ELSNER CH09” — 2012/9/24 — 19:14 — page 224 — #4

225 Track Hexagons

WmaxS
ID60 76.3
D80 65.7
ID99 65.9
ID118 74.8
ID137 31.9
ID96 23.1

The result is a data frame with a single column representing the maximum wind
speed value over all cyclone observations in each hexagon. The row names are the
hexagon numbers prefixed with ID. Finally, you combine the spatial polygons with
the maximum per hexagon wind speeds to create a spatial polygon data frame.

> hspdf = SpatialPolygonsDataFrame (hpg, int,
+ match.ID = TRUE)

You plot the hourly storm locations together with an overlay of your hexagons by
typing

> plot (hspdf)
> plot (W.sdf, pch=20, cex=.3, add=TRUE)

Some hexagons contain many cyclone observations while others contain only a few.
This difference might be important in modeling intensity, so you add total cyclone
hours as a second attribute. First, replace the data in the spatial points data frame with
an index of ones.

> W.sdf@data = data.frame (num=rep(l, ch))

Then, pery an overlay of the hexagons on the cyclone locations with the function
argument) set to sum). Check that the sum of the counts over all grids equals
the total number of cyclone hours.

> co = over (x=hspdf, y=W.sdf, fn=sum)
> sum(co) == ch
[1] TRUE

Finally, add the counts to the spatial polygon data frame and list the first six rows of the
data frame corresponding to the first six hexagons. Here, the rows of co correspond
to those in the data slot of hspdf so there is no need to match the polygon IDs.

> hspdf$count = co[, 1]
> head(slot (hspdf, "data"))

WmaxS count

ID60 76.3 95
ID80 65.7 50
ID99 65.9 104
ID118 74.8 50

Elsner: “09'ELSNER'CH09” — 2012/9/24 — 19:14 — page 225 — #5

jelsner
Sticky Note
remove the outside set of parentheses

226 Spatial Models

ID137 31.9 13
ID96 23.1 45

9.1.4 Maps

You now have a spatial polygon data frame with each polygon as an equal-area
hexagon on an LCC projection and two attributes (maximum wind speed and cyclone
count) in the data slot. Choropleth maps of cyclone attributes are created using the
spplot method introduced in Chapter S.

Before mapping, you create a couple of lists that are used by the sp.layout
argument. One specifies the set of hourly locations from the spatial points data frame
and assigns values to plot arguments.

> 11 = list("sp.points", W.sdf, pch=20, col="gray",
+ cex=.3)

Another specifies the coastlines as a spatial lines object. Some additional work is
needed.

Next req he maps and maptools packages. The first package contains the
map function to generate an object of country borders and the second contains the
map2SpatialLines conversion function. The conversion is made to geographic
coordinates, which are then transformed to the LCC projection of the earlier spatial
objects. You set geographic coordinate limits on the map domain to limit the amount
of conversion and projection calculations.

> require (maps)

> require (maptools)

> ¢l = map("world", xlim=c(-120, 20),

+ ylim=c(-10, 70), plot=FALSE)

> clp = map2Spatiallines(cl, proj4string=CRS(11))
> clp = spTransform(clp, CRS(lcc))

> 12 = list("sp.lines", clp, col="gray")

Depicting attribute levels on a map is done using a color ramp. A color ramp
creates a character vector of color hex codes. The number of colors is specified by
the argument in the color ramp function. Color ramp functions are available in the
colorRamps package (Keitt, 2009). Acquire the package and assign 20 colors to the
vector cr using the blue-to-yellow color ramp.

> require (colorRamps)
> cr = blue2yellow(20)

If the number of colors is less than the number of levels, the colors get recycled. A map
of cyclone frequency is made by typing

> spplot (hspdf, "count", col="white",
+ col.regions=blue2yellow(20),

Elsner: “09'ELSNER CH09” — 2012/9/24 — 19:14 — page 226 — #6

jelsner
Sticky Note
change to "acquire"

227 Track Hexagons

+ sp.layout=1ist (11, 12),
+ colorkey=1ist (space="bottom"),
+ sub="Cyclone Hours")

Similarly, a map of the highest hurricane intensity is made by typing

spplot (hspdf, "WmaxS", col="white",
col.regions=blue2red(20),

>

+

+ sp.layout=1ist(12),

+ colorkey=1ist (space="bottom"),
+

sub="Highest Intensity (m/s)")

The results are shown in Figure 9.1. Areas along the southeastern coastline of the
United States have the greatest number of cyclone hours while the region from the
western Caribbean into the Gulf of Mexico has the highest hurricane intensities.

Figure 9.1 Cyclone
frequency and
intensity. (a) Hours
and (b) highest
intensity.

Highest intensity (m s™')

Elsner: “09'ELSNER'CH09” — 2012/9/24 — 19:14 — page 227 — #7

228 Spatial Models

9.2 SST DATA

The effort needed to create track gri ys off nicely when you add regional climate
data. Here you use sea-surface temperature (SST) from July 20085, as an example.
July values indicate conditions occurring before the active part of the North Atlantic
hurricane season.

In Chapter 6, you used functions in the ncdf package along with some additional
code to extract a data frame of SST consisting of monthly values at the intersections
of parallels and meridians at 2° intervals. We return to these data here. Input them by

typing

> sst = read.table("sstJul%lS.txt", header=TRUE)

> head(sst)

SST lon lat
1 24.1 -100 0
2 24.0 -98 0
3 23.8 -96 0
4 23.5 -94 0
5 23.4 -92 0
6 23.6 -90 0

The data are listed in the column labeled SST. You treat these values as point data
because they have longitudes and latitudes although they are regional averages.

At 25°N latitude, the 2° spacing of the SST values covers an area of approximately
the same size as the hexagon grids used in the previous section. The SST locations are
converted to planar coordinates using the same LCC projection after the data frame
is converted to a spatial data frame. Recall that you need to first assign a projection
string to the proj4stringslot.

> coordinates(sst) = c("lon", "lat")
CRS(11)

> sst = spTransform(sst, CRS(lcc))

> projdstring(sst)

To examine the SST data as spatial points, type
> spplot(sst, "SST", col.regions=rev(heat.colors(20)))
This produces a plot of the spatial points data frame, where the SST attribute is
specified as a character string in the second argument.
Your interest is the average SST within each hexagon. Again, use the over function

to combine your SST values with the track polygons setting the argument fntomean.

> ssta = over (x=hspdf, y=sst, fn=mean)

Elsner: “09'ELSNER'CH09” — 2012/9/24 — 19:14 — page 228 — #8

jelsner
Sticky Note
change to "hexagons"

jelsner
Sticky Note
change to "JulySST2005.txt"

229 SST Data

The result is a data frame with a single column representing the average over all SST
values in each hexagon. The row names are the hexagon numbers prefixed with ID;
over land have missing SST values.

+ST's as an attribute to spatial polygon data frame and
issing SST values.

however, hexagons comple
Next, you add the ave=
then remove hexagons

hspdf$sst = ssta$SST

hspdf = hspdf[!is.na(hspdfs$sst),]

str(slot (hspdf, "data"))

'data.frame' : 88 obs. of 3 variables:

$ WmaxS: num 76.3 65.7 65.9 74.8 23.1

$ count: num 95 50 104 50 45 58 56 26 40 24
$ sst : num 29.2 29.4 29.8 30 29.5

vV VvV Vv

Finally, you create the July SST map corresponding to where the cyclones occurred
during the season by typing

> spplot (hspdf, "sst", col="white",
+ col.regions=blue2red(20),

+ sp.layout=1ist (11, 12),

+ colorkey=1list (space="bottom"),

+ sub="Sea Surface Temperature (C)")

Results are shown in Figure 9.2. Ocean temperatures exceed 26°C over a wide swath
of the North Atlantic extending into the Caribbean Sea and Gulf of Mexico. Coldest
waters are noted off the coast of Nova Scotia and Newfoundland.

Sea-surface temperature (°C)

Figure 9.2 Sea-surface temperature in the cyclone hexagons.

Elsner: “09'ELSNER'CH09” — 2012/9/24 — 19:14 — page 229 — #9

jelsner
Sticky Note
change to "averaged"

jelsner
Sticky Note
change "with missing SST values." to "without a value"

230 Spatial Models

9.3 SST AND INTENSITY

Analyzing and modeling yo T and cyclone data Elsy with your spatial polygon
data frame. For instance, the average maximum wind speed in regions where the SST
exceeds 28°C is obtained by typing

> mean (hspdfs$WmaxS [hspdf$sst > 28])
[1] 45.1

Here you treat your spatial data frame as you would a regular data frame. Continuing,
you create side-by-side box plots of wind speed conditional on the collocated values

of SST (see Chapter S) by typing
> boxplot (hspdfsSwWmaxS~hspdfsSsst > 28)

Spatial information allows you to analyze relationships on a map. Figure 9.3 shows
the hexagons colored by groups defined by a two-way table of cyclone intensity and
SST using above and below median values. The median SST and intensity values
calculated from your data are 28.2°C and 33.9 m s~ !, respectively. Red hexagons indi-
cate regions of high intensity and relatively high ocean temperature and blue hexagons
indicate regions of low intensity and relatively low ocean temperature. More inter-
esting are regions of mismatch. Magenta hexagons show low intensity coupled with
relatively high ocean temperature indicating “underperforming” cyclones (cyclones
weaker than the thermodynamic potential of the environment). By contrast, cyan
hexagons show high intensity coupled with relatively low temperature indicating

«

0 forming” cyclones (cyclones stronger than the thermodynamic potential of

th ironment).

Low SST, Low intensity

Low SST, High intensity
High SST, Low intensity
High SST, High intensity

Figure 9.3 SST and cyclone intensity. Groups are based on median values.

Elsner: “09 'ELSNER'CH09” — 2012/9/24 — 19:14 — page 230 — #10

jelsner
Sticky Note
change "Analyzing and modeling your" to "Analyzing the"

jelsner
Sticky Note
change "and" to "together is"

jelsner
Sticky Note
change to "the"

231 Spatial Autocorrelation

Maps provide insight into the relationship between hurricanes and climate not
accessible with basin-level analyses. Next, we show you how to model these spatial
data. We begin with a look at spatial correlation and then use a spatial regression
model to quantify the regional variation in intensity as a function of SST.

9.4 SPATIALAUTOCORRELATION

Hurricane intensities in neighboring hexagons will tend to be more similar than inten-
sities in hexagons farther away. Spatial autocorrelation quantifies the degree of simi-
larity across geographic space. It is more complicated than temporal autocorrelation
because map space has two dimensions and multiple directions.

9.4.1 Moran’s1

A measure of spatial autocorrelation is Moran’s I (Moran, 1950), defined as

T
my Wj
=1L (9.1)
sy
where m is the number of hexagons, y is the vector of values within each hexagon (e.g,,
cyclone intensities) where the values are deviations from the 1 spatial mean, W
is a weights matrix, s is the sum over all the weights, and the s pt T indicates the

transpose operator.

Values of Moran’s I range from —1 to +1 with a value of zero indicating a pat-
tern with no spatial autocorrelation. Although not widely used in climate studies,
de Beurs and Henebry (2008) use it to identify spatially coherent eco-regions and
biomes related to the North Atlantic Oscillation (NAO).

To compute Moran’s I, you need a weights matrix. The weights matrix is square
with the number of rows and columns equal to the number of hexagons. Here the
weight in row i, column j, of the matrix is assigned a zero unless hexagon i is con-
tiguous with hexagon j. The spdep package (Bivand et al., 2011a) has functions for
creating weights based on contiguity (and distance) neighbors. The process requires
two steps.

First, you use the poly2nb function on your spatial polygon data frame to create
a contiguity-based neighborhood list object.

> require (spdep)
> hexnb = poly2nb (hspdf)

A summary of the neighborhood list is obtained by typing

> hexnb

Neighbour list object:

Number of regions: 88

Number of nonzero links: 372
Percentage nonzero weights: 4.8

Average number of links: 4.23

Elsner: “09 'ELSNER'CH09” — 2012/9/24 — 19:14 — page 231 — #11

jelsner
Sticky Note
change to "superscript"

232 Spatial Models

The list is ordered by hexagon number, starting with the southwest-most hexagon.
It has five neighbors: hexagon numbers 2 and 21. Hexagon numbers increase to the
east and north. A hexagon has at most six contiguous neighbors. Hexagons at the bor-
ders have fewer neighbors. A graph of the hexagon connectivity, here defined by the
first-order contiguity, is made by typing

> plot (hexnb, coordinates (hspdf))
> plot (hspdf, add=TRUE)

A summary method applied to the neighborhood list (summary (hexnb)) reveals
the average number of neighbors and the distribution of connectivity among the
hexagons.

You turn the neighborhood list object into a 1istw object using the nb21listw
function that duplicates the neighborhood list and adds the weights. The style
argument determines the weighting scheme. With the argument value set to W, the
weights are the inverse of the number of neighbors. For instance, the six neighbors of
a fully connected hexagon each get a weight of 1/6.

> wts = nb2listw(hexnb, style="W")
> summary (wts)

Now you are ready to compute the value of Moran’s I. This is done using the
moran function. The first argument is the per hexagon maximum intensity followed
by the name of the 1istw object. Also needed is the number of hexagons and the
global sum of the weights, which is obtained using the Szero function.

> m = length (hspdfsSWmaxs)

> s = Szero(wts)

> moran (hspdf$WmaxS, wts, n=m, S0=s)
ST
[1] 0.564

SK
[1] 2.87

The function returns Moran’s I and the sample kurtosis.! The value of 0.56 indi-
cates fairly high spatial autocorrelation in cyclone intensity. This is expected, since
the strength of a hurricane as it moves across the hexagons often does not vary by
much and because stronger hurricanes tend to occur at lower latitudes.

9.4.2 Spatial Lag Variable

Insight into the Moran’s I statistic is obtained by noting that it is the slope coefficient
in a regression model of Wy on y, where Wy is the spatial lag variable (see Eq. 9.1).

! Kurtosis is a measure of the peakedness of the distribution. A normal distribution has a kurto-
sis of 3.

Elsner: “09 'ELSNER'CH09” — 2012/9/24 — 19:14 — page 232 — #12

233 Spatial Autocorrelation

° Figure 9.4 Moran’s
70
scatter plot for

-1

Neighborhood avg intensity (ms™)

cyclone intensity.

20 »
| T T T T T I
20 30 40 S0 60 70 80

Intensity (ms ™)

Let y be the set of intensities in each hexagon, then you create a spatial lag intensity
variable using the 1ag. 1istw function.

> vy = hspdfsSWmaxS
> Wy = lag.listw(wts, vy)

Thus, for each intensity value in the vector object v, there is a corresponding value in
the vector object Wy, representing the mean intensity over the neighboring hexagons.
The neighborhood average does not include the value in v, so for a completely
connected hexagon, the average is taken over the adjoining six neighboring values.

A scatter plot of the neighborhood average intensity versus the intensity in each
hexagon shows the spatial autocorrelation relationship. The slope of a least-squares
regression line through the points is the value of Moran’s I. Use the following code

below to create the scatter plot shown in Figure 9.4.

par (las=1, pty="s")

plot(y, Wy, pch=20, xlab="Intensity (m/s)",
ylab="Neighborhood Avg Intensity (m/s)")

abline(lm(Wy ~ vy), lwd=2, col="red")

v + V V

The scatter plot (Moran’s scatter plot) indicates a high level of spatial autocorre-
lation. High-intensity hexagons tend to be surrounded, on average, by hexagons with
high intensity and vice versa as evidenced by the upward slope of the regression line.

9.4.3 Statistical Significance

The expected value of Moran’s I under the hypothesis of no spatial autocorrelation is

E(I) = m_—_ll (92)

Elsner: “09 'ELSNER'CH09” — 2012/9/24 — 19:14 — page 233 — #13

234 Spatial Models

where m is the number of hexagons. This allows you to test the significance of your
sample Moran’s I. The test is available in the moran. test function. The first argu-
ment is the vector of intensities and the second is the spatial weights matrix in the
weights list form.

> moran.test(y, wts)

Moran's I test under randomisation

data: vy

weights: wts

Moran I statistic standard deviate = 7.53,
p-value = 2.548e-14
alternative hypothesis: greater

sample estimates:

Moran I statistic Expectation
0.56410 -0.01149

Variance

0.00584

The output shows the standard deviate computed by taking the difference between
the estimated I and its expected value under the null hypothesis of no autocorrelation.
The difference is divided by the square root of the difference between the variance
of I and the square of the mean of I. The p-value is the chance of observing a stan-
dard deviate this large or larger assuming that there is tial autocorrelation (the
null hypothesis). The p-value is extremely small leadin’g;jonclude that there is sig-
nificant autocorrelation. The output also gives the value of Moran’s I along with its
expected value and variance.

By default, the variance of I is computed by randomizing the intensities across the
hexagons. If the intensities have a normal distribution then a direct computation of
the variance of I is made by adding the argument random=FALSE. Moran’s I and
the corresponding significance test are sensitive to the definition of neighbors and to
the neighborhood weights, so conclusions should be stated as conditional on your
definition of neighborhoods.

9.5 SPATIAL REGRESSION MODELS

Spatial regression models make use of spatial autocorrelation. If significant autocor-
relation exists, spatial regression models have parameters that are more stable and
statistical tests that are more reliable than nonspatial alternatives. For instance, confi-
dence intervals on a regression slope will have the proper coverage probabilities and
prediction errors will be smaller. Autocorrelation is included in a regression model by
adding a spatial lag-variable or by including a spatially correlated error term (Anselin
etal., 2006).

Elsner: “09'ELSNER'CH09” — 2012/9/24 — 19:14 — page 234 — #14

jelsner
Sticky Note
insert "you"

235 Spatial Regression Models

Spatial autocorrelation can also enter a model by having the relationship between
the response and the explanatory variable vary across the domain. This is called geo-
graphically weighted regression (GWR) (Brunsdon et al., 1998, Fotheringham et al,,
2000). GWR allows you to see where an explanatory variable contributes strongly
to the relationship and where it contributes weakly. It is similar to a local linear
regression.

For example, you compare a standard linear regression model of intensity on SST
with a local linear regression of the same relationship using the loess.smooth

function by typing

x = hspdfS$sst
par (las=1, pty="s")
plot(x, vy, pch=20, xlab="SST (C)",
ylab="Intensity (m/s)")
x), lwd=2)
lines (loess.smooth(x, y, span=.85), lwd=2, col="red")

abline (1lm(y

vV V. + V V V

With the local regression, the relationship between intensity and SST changes for dif-
ferent values of SST (Fig. 9.5). For low values of SST, the relationship has a gentle
slope and with high values of SST the relationship has a steeper slope. By contrast, the
“global” linear regression results in a single moderate slope across all values of SST.

Fitting is done locally in the domain of SST. That is, for a point s along the SST
axis, the fit is made using points in a neighborhood of s weighted by their distance to s.
The size of the neighborhood is controlled by the span argument. With span=. 85,
the neighborhood includes 85 percent of the SST values.

With GWR, this localization is done in geographic space. For example, a regression
of cyclone intensity on SST is performed using paired values of intensity and SST

values across the 88 hexagons. For each hexagon, the weight associated with a paired

80 - Figure 9.5 Linear and
—— Linear regression .
local linear

—— Local linear regression -
regressions of cyclone

®e
70 ?
6 intensity on SST.
g

-1

Intensity (ms™)

SST (°C)

Elsner: “09 'ELSNER'CH09” — 2012/9/24 — 19:14 — page 235 — #1§

236 Spatial Models

value in another hexagon is inversely proportional to physical distance between the
two hexagons. In this way, the relationship between intensity and SST is localized.

9.5.1 Linear Regression

The standard regression model consists of a vector y of response values and a matrix
X containing the set of explanatory variables plus a row vector of 1s. The relationship
is given by

y=XB+e¢ (9.3)

where f is a vector of regression coefficients and £ ~ N(0, o21I) is avector of indepen-
dent and identically distributed residuals with variance o-%. The maximum-likelihood
estimate of 8 is given by

B=(xTx)"xTy. (9.4)

You begin with a linear regression of cyclone intensity on SST across the set of
hexagons. Although your interest is the relationship between intensity and SST, you
know that intensity within the hexagon will likely also depend on the number of
cyclone hours. On average, a hexagon with a large number of hurricane hours will
have a higher intensity. Thus, your regression model includes SST and cyclone hours
as explanatory variables, in which case the SST coefficient from the regression is an
estimate of the effect of SST on intensity after accounting for cyclone frequency.

You use the 1m function to create a linear regression model. The summary method
is used to obtain statistical information about the model.

> model = 1lm(WmaxS ~ sst + count, data=hspdf)
> summary (model)
Call:

Im(formula = WmaxS

sst + count, data = hspdf)

Residuals:
Min 10 Median 30 Max
-25.27 -10.03 -1.54 7.32 36.41

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -0.9402 11.3521 -0.08 0.9342
sst 1.1981 0.4390 2.73 0.0077
count 0.2343 0.0547 4.28 4.9e-05

Residual standard error: 13.6 on 85 degrees of freedom

Multiple R-squared: 0.305, Adjusted R-squared: 0.289
F-statistic: 18.7 on 2 and 85 DF, p-value: 1.89e-07

Elsner: “09 'ELSNER'CH09” — 2012/9/24 — 19:14 — page 236 — #16

237 Spatial Regression Models

The formula is specified as WmaxS ~ sst + count to indicate that the mean
Wmaxs is related to sst and count. Results show that SST and cyclone hours are
important in statistically explaining cyclone intensity across the set of hexagons. The
parameter on the SST variable is interpreted to mean that for every 1°C increase in
sea-surface temperature, cyclone intensity goes up by 1.2 ms™! after accounting for
cyclone hours. The model explains 30.5 percent of the variation in intensity. These
results represent the average relationship over the basin.

9.5.2 Geographically Weighted Regression

With GWR the SST parameter is replaced by a vector of parameters one for each
hexagon. The relationship between the response vector and the explanatory variables
is given by

y=XB(g)+¢ (9.5)

where g is a vector of geographic locations—here the set of hexagons with cyclone

intensities—and

B(g) = (XTwx)~' X" wy (9:6)
where W is a weights matrix given by

W =exp(—D*/h?) (9.7)

where D is a matrix of pairwise distances between the hexagons and / is the band-
width. The elements of the weights matrix, w;, are proportional to the influence
hexagons j have on hexagons i. Weights are determined by an inverse-distance func-
tion (kernel) so that values in nearby hexagons have greater influence on the local
relationship between x and y compared with values in hexagons farther away.

The bandwidth controls the amount of smoothing. It is chosen as a trade-off
between variance and bias. A bandwidth too narrow (steep gradients on the kernel)
results in large variations in the parameter estimates (large variance). A bandwidth
too wide leads to a large bias as the parameter estimates are influenced by processes
that do not represent local conditions.

Functions for selecting a bandwidth a ning GWR are available in the spgwr
package (Bivand et al., 2011b). First, reis;i;j—tl
using the gwr . sel function. The first argument is the model formula and the sec-

he package and select the bandwidth

ond is the data frame. The data frame can be a spatial points or spatial polygon data
frame.

> require (spgwr)

> bw = gwr.sel (WmaxS
> bw * .001

sst + count, data=hspdf)

The procedure is an iterative optimization with improvements made ba previ-
ous values of the bandwidth. Values for the bandwidth and the cross-val n score

Elsner: “09 'ELSNER'CH09” — 2012/9/24 — 19:14 — page 237 — #17

jelsner
Sticky Note
change to "acquire"

jelsner
Sticky Note
change "cross-validation score" to "cross-validated skill score"

238 Spatial Models

are printed. After several iterations, no improvement@e score occurs. The band-
width has dimensions of length representing a spatial distance. The units of the LCC
projection in the spatial polygon data frame is meters, so to convert the bandwidth to
kilometers, you multiply by 1073.

GWR s performed using the gwr function. The first two arguments are the same as
in the function to select the bandwidth. The value of the bandwidth is supplied with
the bandwidth argument.

> model = gwr (WmaxS ~ sst + count, data=hspdf,
+ bandwidth=bw)

The output is saved in an object of class gwr. To print a brief summary of the output,

type

> model

Call:

gwr (formula = WmaxS
bandwidth = bw)

Kernel function: gwr.Gauss

Fixed bandwidth: 644341

Summary of GWR coefficient estimates:

sst + count, data = hspdf,

Min. lst Qu. Median 3rd Qu.
X.Intercept. -8.12e+02 -3.21le+02 -1.20e+01 2.86e+01
sst -3.59e+00 -1.79e-02 1.46e+00 1.21e+01
count 9.71e-03 1.45e-01 1.90e-01 2.71le-01

Max. Global
X.Intercept. 1.20e+02 -0.94
sst 2.88e+01 1.20
count 5.83e-01 0.23

The output repeats the function call, which includes the form of the model, the
kernel function (here Gaussian), and the bandwidth (units of meters). The out-
put also includes a summary of the regression parameter values across the hexagons.
In general, intensity is positively related to SST, but the minimum parameter value
indicates that in at least one hexagon the relationship is negative. The units on this
regression parameter are meter per second per degree celsius. The summary also
includes the parameter values from a standard regression under the column head-
ing Global. These values are the same as those output previously using the 1m
function.

The object model$SDF inherits the spatial polygon data frame class from the
model object along with the corresponding map projection. A summary method on
this object provides additional information about the GWR.

Elsner: “09 'ELSNER'CH09” — 2012/9/24 — 19:14 — page 238 — #18

jelsner
Sticky Note
change to "in"

239 Spatial Regression Models

> summary (model$SDF)
Object of class SpatialPolygonsDataFrame
Coordinates:
min max
x -4356736 4341671
y 1124111 6002653
Is projected: TRUE
projdstring
[+proj=1lcc +lat_1=60 +lat_2=30 +lon_0=-60
+ellps=WGS84]
Data attributes:

sum.w X.Intercept. sst
Min. 2.72 Min. :-811.9 Min. :=3.5920
lst Qu.: 6.14 l1st Qu.:-320.7 l1st Qu.:-0.0179
Median 7.88 Median : -12.0 Median : 1.4619
Mean : 7.72 Mean :-143.4 Mean : 6.0174
3rd Qu.: 9.55 3rd Qu.: 28.6 3rd Qu.:12.1371
Max. :11.11 Max. : 119.5 Max. :28.7864
count gwr.e pred
Min. :0.00971 Min. :=27.1580 Min. :17.2
lst Qu.:0.14454 lst Qu.: -3.5292 lst Qu.:29.9
Median :0.19029 Median : -0.0526 Median :36.2
Mean :0.22379 Mean : -0.1788 Mean :39.2
3rd Qu.:0.27065 3rd Qu.: 4.2381 3rd Qu.:46.3
Max. :0.58289 Max. : 21.3694 Max. :74.0
localR2
Min. :0.237
lst Qu.:0.464
Median :0.543
Mean :0.566
3rd Qu.:0.668
Max. :0.966

Here, the coordinate bounding box is given along with the projection informa-
tion. Data attributes are stored in the data slot. The attributes include the model
parameters (including the intercept term), the sum of the weights, predicted values,
prediction errors, and R-squared values. A histogram of the R-squared values is made

by typing

> hist (model$SDFS$SlocalR2, main="",
+ xlab="Local R-Squared Values")

The R-squared values are centered near a value 0.5, but there are three hexagons with
avalue above 0.9 (Fig. 9.6).

Elsner: “09 'ELSNER'CH09” — 2012/9/24 — 19:14 — page 239 — #19

240 Spatial Models

Figure 9.6 R-squared

values from a GWR of
20 intensity on SST and
cyclone hours.
15

Frequency
S
1

wn
1

] L[]

[T T 1

T
0.2 0.4 0.6 0.8 1.0
R-squared

o
L

Additional insight is obtained by mapping the results. For instance, to make a
choropleth map of the SST parameter values, type

> spplot (model$SDF, "sst", col="white",

+ col.regions=blue2red(10), at=seq(-25, 25, 5),

+ sp.layout=1ist(12), colorkey=1list (space="bottom"),
+ sub="SST Effect on Intensity (m/s per C)")

The results are shown in Figure 9.7. The marginal influence of SST on cyclone
intensity is shown along with corresponding t values. The t value is calculated as
the ratio of the parameter value to its standard error. Large values of |¢| indicate
a statistically-significant relationship. Standard errors are available by specifying the
argument hatmatrix=TRUE in the gwr function.

Hexagons are colored according to the SST parameter. The SST parameter (coef-
ficient) represents a local “trend” of intensity as a function of SST holding cyclone
hours constant. Hexagons with positive coefficients, indicating a direct relationship
between cyclone strength and ocean warmth in meter per second per degree celsius
are displayed using red hues and those with negative coefficients are shown with blue
hues. The divergent color ramp blue2red creates the colors.

Hexagons with the largest positive parameters (greater than Sms~!/°C) are found
over the Caribbean Sea extending into the southeast Gulf of Mexico and east of the
Lesser Antilles. Coefficients above zero extend over much of the Gulf of Mexico
northeastward into the southwestern Atlantic. A region of coefficients less than zero
is noted over the central North Atlantic extenr’®=\from the middle Atlantic coast of
the United States eastward across Bermuda a to the central Atlantic. This map
quantifies the grouped results shown in Figure 9.3.

Local statistical significance is estimated by dividing the parameter value by its stan-
dard error. The ratio, called the ¢ value, is described by a t distribution under the null
hypothesis of a zero-value (see Chapter 3). Regions of high t values (absolute value

Elsner: “09 'ELSNER'CH09” — 2012/9/24 — 19:14 — page 240 — #20

jelsner
Sticky Note
remove "and into the central Atlantic"

241 Spatial Regression Models

SST effect on intensity (m s_1/°C)

T T

-4 -2 0 2 4

Significance of effect (t-value)

Figure 9.7 Effect of SST on cyclone intensity. (a) SST coefficient and (b) t value.

greater than 2) denote areas of statistical significance and generally correspond with
regions of large upward trends including most of the Caribbean sea and the eastern
Gulf of Mexico. Regions with negative trends over the ce tlantic extendin

the coastline fail to show significance. To some degree, t@‘:sults depend ongg%
size of your hexagons. One strategy is to rerun the GWR model with larger and smaller
hexagons. In this way, you can check how much the results change and whether the
changes influence your conclusions.

9.5.3 Model Fit

To assess model fit, you examine the residuals. Here, a residual is the difference
between observed and predicted intensity in each hexagon. Residuals above zero

Elsner: “09'ELSNER'CH09” — 2012/9/24 — 19:14 — page 241 — #21

jelsner
Sticky Note
change to "the"

jelsner
Sticky Note
change "the size of your hexagons" to "hexagon size"

242 Spatial Models

Figure 9.8 Histogram
25 of GWR residuals.
Residuals less than
20 - —10m s~ ! are brown.
g 15
L)
&
=
10
| J
0 -

T T T T T 1
-30 -20 -10 0 10 20

Residual (ms™)

indicate that the model underpredicts the intensity and residuals below zero indicate
that the model overpredicts intensity. Residuals are saved in modelSDFgwr . e.
A histogram of the residuals (Fig. 9.8) shows the values are centered on zero. The left
tail indicates that the model overpredicts intensity in some hexagons. Use the code

below to check yourself.

> rsd = modelS$SDFSgwr.e
> hist(rsd, main="", xlab="Residual (m/s)")
> hist(rsd[rsd <= -10], add=TRUE, col="brown")

An interesting question concerns the location of these overpredictions. This is
answered by coloring the hexagons having the largest negative residuals. First cre-
ate a new vector for the spatial polygon data frame consisting of 1s indicating largest
negative residuals and Os indicating otherwise. You then use the spplot method and
restrict the color region argument to "brown" and "white" and turn off the color

key.

> model$SDFSop = as.integer (rsd <= (-10))
> spplot (model$SDF, "op", col="white",

+ col.regions=c("white", "brown"),

+ sp.layout=1ist(12), colorkey=FALSE)

Results are shown in Figure 9.9. In general, the largest overpredictions occur at low
latitudes in hexagons near land. This makes sense; in these regions, although SST
values are high, cyclone intensities are limited by other environmental factors asso-
ciated with land like drier air and greater friction. The map suggests a way the model
can be improved. In this regard, a factor indicating the presence or absen ndora
covariate indicating the proportion of hexagon covered by land would betc%jonable
thing to try.

Other types of spatial regression models fit this hexagon framework. For instance,
if interest is cyclone counts, then a Poisson spatial model (Jagger et al., 2002) can be

Elsner: “09 'ELSNER'CH09” — 2012/9/24 — 19:14 — page 242 — #22

jelsner
Sticky Note
change "a reasonable thing to try" to "reasonable things to try"

243 Spatial Interpolation

v ©

©

Figure 9.9 Regions of largest negative residuals.

used. And if interest is prediction rather than explanation a model that includes spatial
autocorrelation through a correlated error term or a spatial, lag variable is possible. In
Chapter 12, we show how to use this hexagon framework to construct a space-time

model for hurricane occurrence.

9.6 SPATIAL INTERPOLATION

Spatial data often need to be interpolated. Cyclone rainfall is a good example. You
know how much it rained at locations having rain gauges but not everywhere. Spa-
tial interpolation uses the rainfall collected at the gauge sites to estimate rainfall at
arbitrary locations. Estimates on a regular grid are used to create contour maps.

This can be done in various ways. Here we show how to do it statistically. Statistical
interpolation is preferable because it includes uncertainty estimates. The procedure is
called “kriging,” after the name of a mining engineer (Matheron, 1963).

A kriged estimate (prediction) of some variable z at a given location is a weighted
average of the z values over the entire domain where the weights are proportional to
the spatial correlation. The estimates are optimal in the sense that they minimize the
variance between the observed and interpolated values. In short, kriging involves esti-
mating and modeling the spatial autocorrelation and then using the model together
with the observations to interpolate valves at arbitrary locations.

Here you work through an example using rainfall from tropical cyclone Fay in 2008.
Fay formed near the Dominican Republic as a tropical wave, passed over the island of
Hispaniola and Cuba before making landfall on the Florida Keys. Fay then crossed
the Florida peninsula a ved westward across portions of the Florida panhandle
producing heavy rains i@is of the state.

9.6.1 Preliminaries

Here you use a spatial interpolation model to generate a continuous isohyet sur-
face of rainfall totals from Fay. The data are in FayRain.txt and are a compilation of

Elsner: “09 'ELSNER'CH09” — 2012/9/24 — 19:14 — page 243 — #23

jelsner
Sticky Note
change "in parts of the state" to "along the way"

244 Spatial Models

reports from the U.S. NOAA/NWS official weather sites and coop sites. The coop
sites are the Community Collaborative Rain, Hail an w Network (CoCoRaHS),
a community-based, high-density precipitation new%:lade up of volunteers who
take measurements of precipitation in their backyards. Th a were obtained from
NOAA/NCEP/HPC and from the Florida Climate Cente%

You make use of functions in the gstat package (Pebesma, 2004). R@e the
package and read in the data by typing

> require(gstat)

> FR = read.table("FayRain.txt", header=TRUE)
> names (FR)

[1] "lon" "lat" "tpi" "tpm"

The data frame contains 803 rain guage sites. Longitude and latitude coordinates of
the sites are given in the first two columns and total rainfall in inches and millimeters
are given in the second two columns.

Create a spatial points data frame by specifying columns that contain the spatial
coordinates. Then assign a geographic coordinate system and convert the rainfall
from millimeters to centimeters.

> coordinates (FR) = c("lon", "lat")
> 112 = "+proj=longlat +datum=NAD83"
> projdstring (FR) = CRS(112)

> FRStpm = FRStpm/10

A summary of the observed rainfall totals in centimeters is given by typing

> summary (FRStpm)
Min. 1lst Qu. Median Mean 3rd Qu. Max.
0.0 8.3 15.8 17.6 24 .4 60.2

The median value is 15.8 cm and the maximum is 60.2 cm.

Next, import the Florida shapefile containing the county polygons as used in
Chapter S. You use the readShapeSpatial function from the maptools package
to accomplish this task (see Chapter).

> require (maptools)
> FLpoly = readShapeSpatial ("FL/FL",
+ projdstring=CRS(112))

Next, create a character string specifying the tags for a planar projection and
transform the geographic coordinates of the site locations and map polygons to the
projected coordinates. Here, you use Albers equal-area projection with true scale at
latitudes 23 and 30°N and include a tag to specify meters as the unit of distance.

> require(rgdal)
> aea = "+proj=aea +lat_1=23 +lat_2=30 +lat_0=26,
+ +lon_0=-83 +units=m"

Elsner: “09'ELSNER CH09” — 2012/9/24 — 19:14 — page 244 — #24

jelsner
Sticky Note
change to "cooperation"

jelsner
Sticky Note
insert "(thanks to Josh Cossuth)"

jelsner
Sticky Note
change to "Acquire"

245 Spatial Interpolation

> FR = spTransform(FR, CRS(aea))
> FLpoly = spTransform(FLpoly, CRS(aea))

A map of the rain guage sites and storm totals with the state boundaries is made by
typing

> 13 = list("sp.polygons", FLpoly, lwd=.3,
+ first=FALSE)
> spplot (FR, "tpm", sp.layout=13)

Two areas of extreme rainfall are noted: one running north-south along the east coast

and another one over the north. Rain gauges are clustered in urban areas.

9.6.2 Sample Variogram

Rainfall is an example of geostatistical data. In principle, it can be measured anywhere,
but typically you have values at a sample of sites. The pattern of sites is not of much
interest as it is a consequence of constraints (convenience, opportunity, economics,
etc.) unrelated to the phenomenon. Instead, your interest centers on inference about
how much r I across the region. This is done using kriging—the cornerstone of
{(gessie [1993]).

Kriging requires you to model the spatial autocorrelation with a variogram. The

geostatistics

sample variogram § (h) is given as

)

p(h) = 2 (Zi_zj)z (9.8)
Ly

where N(h) is the number of distinct pairs of observation sites a lag distance h apart,
and z; and z; are the rainfall totals at gauge sites i and j. Note that / is an approximate
distance used with a lag tolerance §h. The assumption is that the rainfall field is sta-
tionary. This means that the relationship between rainfall at two locations depends
only on the relative positions of the sites and not on where the sites are located. This
relative position refers to distance and orientation.

You further assume that the variance of rainfall between sites depends only on their
lag distance and not on their orientation relative to one another (isotropy assump-
tion). Smaller variances are expected between nearby sites compared with variances
between more distant sites. The variogram is the inverse of the spatial correlation
function (correlogram). You expect larger correlation in rainfall amount een
sites that are nearby and smaller correlation between sites farther apart. Thmeans,
for instance, that if gauge, has a large rain total, nearby sites will also tend to have large
totals (small difference).

By definition, y (h) is the semivariogram and 2y (h) is the variogram. However,
for conciseness, y (h) is often referred to as the variogram. The variogram is a plot of
the semivariance as a function of lag distance. Since your rainfall values have units of
centimeters, the units of the semivariance are square centimeter.

Elsner: “09 'ELSNER'CH09” — 2012/9/24 — 19:14 — page 245 — #2§

jelsner
Sticky Note
change to "(Cressie, 1993)"

jelsner
Sticky Note
replace sentence with "This means that if a particular gauge has received a lot of rain, nearby gauges will also tend to be full resulting in small differences at short distances."

246 Spatial Models

The sample variogram is computed using the variogram function. The first argu-
ment is the model formula specifying the rainfall column from the data frame and the
second argument is the data frame name. Here ~1 in the model formula indicates
your assumption of no trend in the rainfall field. Trends can be included by specifying
coordinate names (e.g., “1lon+lat). Recall that although you specified a planar pro-
jection, the coordinate names are not changed from the original geographic latitude
and longitude.

You compute the sample variogram for Fay’s rainfall and save it by typing

> v = variogram(tpm ~ 1, data=FR)

To see the variogram values as a function of lag distance, use the plot method on the

variogram object.
> plot(v)

The result is shown in Figure 9.10. Values start low (50 cm?) at short lag distances,
then increase to over 200 cm? at lag distances of about 200 km (Fig. 9.10). The
zero-lag semivariance is called the “nugget” and the semivariance level where the vari-
ogram values no longer increase is called the “sill.” The lag distance to the sill is called
the “range.” These three parameters (nugget, sill, and range) are used to model the
variogram.

Semivariances are calculated using all pairs of rainfall observations within a lag dis-
tance (plus a lag tolerance). T ber of pairs (indicated below each point on the
plot) varies with lag distance. 'K%jranre more pairs at short range.

You check on the assumpti isotropy by plotting sample variograms at specified
azimuths. For example, sepa%ariograms are estimated for four directions (0, 45,

90, and 135°) using the argument alpha in the variogram function, where 0° is

[]
200 15544 o
1061 PY 12792 @
@ 154! 4756 @ [] 12294
E‘ 15189 13858 @ 13034
_ 13840
5, 150 15.986 11203
=
=
g 19069
£ 100
g °
g 11725
L 50400
5170 9788
O -
T I I I I
0 100 200 300 400

Lagged distance (h) [km]

Figure 9.10 Empirical variogram of storm-total rainfall from tropical cyclone Fay.

Elsner: “09 'ELSNER'CH09” — 2012/9/24 — 19:14 — page 246 — #26

jelsner
Sticky Note
replace sentence with "Generally there are more gauge pairs at medium distances."

jelsner
Sticky Note
change "separate variograms are estimated for four" to "variograms are estimated in four separate"

247 Spatial Interpolation

north—south. These directional variograms restrict observational pairs to those hav-
ing similar relative orientation within an angle tolerance (think of a pie slice). If the
directional variograms look similar to each other, then the assumption of isotropy
is valid.

9.6.3 Variogram Model

Next you fit a model to the sample variogram. The variogram model is a mathematical
relationsh*=—lefining the semivariance as a function of lag distance. There are several
choices fi del type (functions). To see the selection type show.vgms (). The
nugget is shown as an open circle. The Gaussian function (“Gau”) appears reasonable
since it increases slowly at short lag distances then more rapidly at larger distances
before leveling off at the sill.

You save the function and initial parameter values in a variogram model object by
typing
> vmi = vgm(model="Gau", psill=150, range=200 % 1000,
+ nugget=50)

The ps j{;?—_;rgument is the partial sill as the difference between the sill and the

nugget. et eyeball estimates of the parameter values from your sample vari-

ogram.
You then use the fit.variogram function to fit the model to[;i]sample
variogram. Specifically, given the Gaussian function and initial eyebawestimated

parameter values, a weighted least-squares method improves these estimates. Note
that ordinary least-squares is not appropriate in this case as the semivariances are cor-
related across the lag distances and the precision on the estimates varies depending

on the number of site pairs for a given lag.

> v.fit = fit.variogram(v, vmi)
> v.fit
model psill range
Nug 46.8 0
2 Gau 157.1 128666

The result is a variogram model with a nugget of 46.8 cm?, a partial sill of 157.1 cm?,
and a range of 128.7 km. You plot the variogram model on top of the sample
variogram by typing

> plot(v, v.fit)

Let r be the range, c the partial sill, and ¢, the nugget, then the equation defining the
curve over the set of lag distances h in Figure 9.11 is

y(h)=c<1—exp <—};—22>> +¢ (9.9)

Elsner: “09 'ELSNER'CH09” — 2012/9/24 — 19:14 — page 247 — #27

jelsner
Sticky Note
remove "for model type (functions)"

jelsner
Sticky Note
change sentence to read "You eyeball initial parameter values from your sample variogram plot."

jelsner
Sticky Note
remove "eyeball estimated"

248 Spatial Models

200

150

100

Semivariance (7) (cm?)

50

T T T T T
0 100 200 300 400

Lag distance (h) (km)

Figure 9.11 Gaussian variogram model for Fay’s rainfall across Florida.

There are a variety of variogram functions. You can try the spherical function by
replacing the model="Gau" with model="Sph" in the earlier vgm function.

vmi2 = vgm(model="Sph", psill=150,

range=200 * 1000, nugget=50)
v2.fit = fit.variogram(v, vmi2)
plot (v, v2.fit)

vV V + V

The geoR package contains the eyefit function that can make choosing a func-
tion easier; however, the interpolated values are not overly sensitive, assuming a
reasonable choice.

9.6.4 Kriging

The final step is to use the variogram model together with the rainfall values at the
gauge sites to create an interpolated surface. The process is called kriging. As Edzer
Pebesma notes, “krige” is to “kriging” as “predict” is to “prediction.” Here, you use
ordinary kriging as there are no spatial trends in the rainfall. Universal kriging is used
when trends are present.

Interpolation is done using the krige function. The first argument is the model
specification and the second is the data. Two other arguments are needed. One is
the variogram model using the argument name model and the other is a set of loca-
tions, identifying where the interpolations are to be made. This is specified with the
argument name newdata.

Here you interpolate first to locations (point kriging) on a regular grid and then to
the county polygons (block kriging). To create a grid of locations within the boundary
of Florida, type

> grd = spsample(FLpoly, n=5000, type="regular")

Elsner: “09 'ELSNER'CH09” — 2012/9/24 — 19:14 — page 248 — #28

249 Spatial Interpolation

You specify the number of locations using the argument n. The actual number will
be slightly different because of the irregular boundary. To view the locations simply,
use the plot method on the grid object. More options for plotting are available if the
spatial points object is converted to a spatial pixels object. You do this by typing:

> grd = as(grd, "SpatialPixels")

First use the krige function to interpolate (predict) the observed rainfall at the
grid locations. For a given location, the interpolation is a weighted average of the
rainfall across the entire region where the weights are determined by the variogram
model.

> ipl = krige(tpm ~ 1, FR, newdata=grd, model=v.fit)
[using ordinary kriging]

The function recognizes the type of kriging being performed. rse distance-
weighted interpolation is performed-ifthe variogram model is leEjThe function
will not work if there are multiple vact%ijt a given location.

The object (ip1) inherits the spatial pixels object specified in the newdata argu-
ment, but extends it to a spatial pixels data frame by adding a data slot. The data slot is
a data frame with two variables. The first varl . predis the interpolated rainfall and
the second varl.var is the prediction variance.

You plot the interpolated field using the spplot method. You specify an inverted

topographic color ramp to highlight in blue regions with the highest rain totals.

> spplot(ipl, "varl.pred", col.regions=
+ rev (topo.colors(20)), sp.layout=13)

The map (see Fig. 9.12) makes it easy to see that parts of east central and north Florida
were deluged by Fay.

You use block kriging to estimate rainfall amounts within each county. The county-
wide rainfall average is relevant for water resource managers. Block kriging produces
a smoothed estimate of this area average, which will differ from a simple arithmetic
average over all sites within the county.

You use the same function to interpolate but specify the spatial polygons rather
than the spatial grid as the new data.

> ipl2 = krige(tpm ~ 1, FR, newdata=FLpoly,
+ model=v.fit)

[using ordinary kriging]
You then map the results using the same plot arguments as before.

> spplot(ipl2, "varl.pred", col.regions=
+ rev (topo.colors(20)))

Rainfall maps using point and block kriging are shown in Figure 9.12. The overall
pattern of rainfall from Fay featuring the largest amounts along the central east coast
and over the eastern panhandle is similar on both maps.

Elsner: “09 'ELSNER'CH09” — 2012/9/24 — 19:14 — page 249 — #29

jelsner
Sticky Note
change "leftout" to "not specified"

jelsner
Sticky Note
change to "values"

250 Spatial Models

B

0 S 10 15 20 25 30 35 40 0 S 10 1S 20 25 30 35 40
Storm total rainfall (cm) County average rainfall (cm)

Figure 9.12 Rainfall from tropical cyclone Fay. (a) Point and (b) block kriging.

You compute the arithmetic average of county-wide rainfall, again using the over

function by typing
> ipl3 = over (x=FLpoly, y=FR, fn=mean)

The function returns a data frame of the average rainfall in each county. The statewide
mean of the kriged estimates is 20.8 cm, which compares with a statewide mean of the
arithmetic averages of 20.9 cm. The correlation between the two estimates across the
67 counties is 0.87. The variogram model reduces the standard deviation of the kriged
estimate (7.77 cm) relative to the standard deviation of the simple averages (9.93 cm)
because of the smoothing.

9.6.5 Uncertainty

An advantage of kriging as a method of spatial interpolation is the accompanying
uncertainty estimates. The prediction variances are listed in a column in the spa-
tial data frame saved from your application of the krige function. Variances are
smaller in regions with a greater number of rainfall gauges. Prediction variances are
also smaller with block kriging as much of the variability within the county gets aver-
age out. To compare the distribution characteristics of the prediction variances for
the point and block kriging of the rainfall observations, type

> round (summary (ipl$varl.var), 1)
Min. 1st Qu. Median Mean 3rd Qu. Max.
47.4 48.8 49.6 50.6 50.8 179.0

> round (summary (ipl2S$varl.var), 1)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.5 1.4 2.0 2.4 2.8 8.5

Elsner: “09 'ELSNER'CH09” — 2012/9/24 — 19:14 — page 250 — #30

jelsner
Sticky Note
Editor: Fix color saturation.

251 Spatial Interpolation

The median prediction variance for your point kriging is 49.6 cm?, which is close to
the value of the nugget. By contrast, the median prediction variance for your block
kriging is a much smaller 1.9 cm?.

Simulations exploit this uncertainty and provide synthetic data for use in determin-
istic models. A rainfall-runoff model, for instance, can be run with simulated rainfall
fields providing a realistic representation of the variation in the amount of runoff
resulting from the uncertainty in the rainfall field (Bivand et al., 2008).

Conditional simulation, where the simulated field (realization) is generated given
the data and the variogram model, is done using the same }=<se function by adding
the argument nsim to specify the number of simulations. large number of sim-
ulations, it may be necessary to limit the number of neighbors in the kriging. This is

[o

 FEEEEN = TNNEN

0 S 10 15 20 25 30 35 40 0 S5 10 15 20 25 30 35 40

Simulated rainfall (cm) Simulated rainfall (cm)

@ =]

. FHEEEN | CEEEE

0 S 10 15 20 25 30 35 40 0 S5 10 1S 20 25 30 35 40

Simulated rainfall (cm) Simulated rainfall (cm)

Figure 9.13 Rainfall simulations from tropical cyclone Fay.

Elsner: “09 'ELSNER'CH09” — 2012/9/24 — 19:14 — page 251 — #31

jelsner
Sticky Note
change sentence to read "To speed computation when making many simulations you limit the number of site pairs used in the kriging."

252 Spatial Models

done using the nmax argument. For a given location, the weights assigned to obser-
vations far away are very small, so it is efficient to limit how many are used in the
simulation.

As an example, here you generate four realizations of the county-level storm total
rainfall for Fay and limit your neighborhood to 50 of the closest observation sites.
Note that it may take a few minutes to finish processing this function.

> ipl.sim = krige(tpm ~ 1, FR, newdata=FLpoly,

+ model=v.fit, nsim=4, nmax=50)

Maps of the four realizations are shown in Figure 9.13. Simulations are conditional
on the observed rainfall and the variogram model using block kriging on the counties.
Note that the overall pattern of rainfall remains the same, but there are differences
especially in counties with relatively few observations and where the rainfall gradients
are steep. The functionality is limited to Gaussian simulation, but the RandomFields
package (Schlather, 2011) provides additional simulation algorithms.

In summary, kriging is a statistical method for spatial data interpolation involving
three steps. First, you estimate a sample variogram that describes the spatial autocor-
relation structure of your observations. This step includes checking for trends and
isotropy. Second, you determine a variogram model using the method of weighted
least squares. This step involves a somewhat subjective choice of the model, but the
interpolation is not too sensitive to this choice assuming that it is reasonable. Third,
you use the variogram model together with your observations to interpolate values at
specified locations, on a grid, or over an area. Finally, simulation methods generate
synthetic data for expressing and propagating uncertainty associated with the spatial
variability in the data and with model specification. Kriging is a nuanced process, but
with practice, it can be an important tool in your toolbox.

This chapter demonstrated ways to analyze and model hurricane data spatially.
We began by showing how to combine hurricane track data with climate data. We
then showed how to analyze the data including estimating the spatial autocorrelation.
This was followed by a demonstration of how to use GWR to model hurricane inten-
sity across space. Quantifying and mapping the changing relationship between the
response variable and covariates can lead to new insights about how hurricanes oper-
ate across space. Thj arch area is wide open. Finally, we showed how to perform a
spatial interpolatio}:@; aprediction method from geostatistics. In the next chapter,

we will look at some ways to analyze and model time series data.

Elsner: “09 'ELSNER'CH09” — 2012/9/24 — 19:14 — page 252 — #32

jelsner
Sticky Note
insert "of tropical cyclone rainfall"

