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8
INTENSITY MODELS

“We must think about what our models mean, regardless of fit, or we will promulgate
nonsense.”
—LelandWilkinson

Strong hurricanes, such as Camille in 1969, Andrew in 1992, and Katrina in 2005,
cause catastrophic damage. It is important to have an estimate of when the next big
one will occur. You also want to know what influences the strongest hurricanes and
whether they are getting stronger.
This chapter shows you how to model hurricane intensity. The data are basinwide

lifetime highest intensities for individual tropical cyclones over the North Atlantic
and county-level hurricane wind intervals. We begin by considering trends using the
method of quantile regression and then examine extreme-valuemodels for estimating
return periods. We also look at modeling cyclone winds when the values are given by
category, and use Miami-Dade County as an example.

8.1 LIFETIME HIGHEST INTENSITY

Here you consider cyclones above tropical storm intensity (≥ 17 m s−1) during
the period 1967–2010, inclusive. The period is long enough to see changes but not
too long that it includes intensity estimates before satellite observations. We use
“intensity” and “strength” synonymously to mean the fastest wind inside the cyclone.

8.1.1 Exploratory Analysis

Consider the set of events defined by the location and wind speed at which a tropical
cyclone first reaches its lifetime maximum intensity (see Chapter 5). The data are in
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the file LMI.txt. Import and list the values in 10 columns of the first 6 rows of the data
frame by typing

> LMI.df = read.table("LMI.txt", header=TRUE)

> round(head(LMI.df)[c(1, 5:9, 12, 16)], 1)

Sid Yr Mo Da hr lon WmaxS maguv

26637.5 941 1967 9 3 17 -52.2 70.5 27.5

26703.4 942 1967 9 20 10 -97.1 136.2 8.0

26747.2 943 1967 9 13 2 -51.0 94.5 4.2

26807.2 944 1967 9 13 20 -65.0 74.3 3.8

26849.5 945 1967 9 28 23 -56.9 47.3 9.0

26867 946 1967 10 3 0 -93.7 69.0 5.6

The data set is described in Chapter 6. Here your interest is the smoothed intensity
estimate at the time of lifetime maximum (WmaxS).
First, convert the wind speeds from the operational units of knots to the SI units of

meter per second.

> LMI.df$WmaxS = LMI.df$WmaxS * .5144

Next, determine the quartiles (0.25 and 0.75 quantiles) of the wind speed distri-
bution. The quartiles divide the cumulative distribution function (CDF) into three
equal-sized subsets.

> quantile(LMI.df$WmaxS, c(.25, .75))

25% 75%

25.5 46.0

You find that 25 percent of the cyclones have a maximum wind speed less than
26 m s−1 and 75 percent have a maximum wind speed less than 46 m s−1, so that
50 percent of all cyclones have a maximum wind speed between 26 and 46 m s−1

(interquartile range–IQR). Similarly, the quartiles (deciles) divide the sample of
storm intensities into four (10) groups with equal proportions of the sample in each
group. The quantiles, or percentiles, refer to the general case.
The CDF gives the empirical probability of observing a value in the record less

than a given wind speed maximum. The quantile function is the inverse of the CDF
allowing you to determine the wind speed for specified quantiles.
Thus, given a sample of maximumwind speedsw1, . . . ,wn , the τ th sample quantile

is the τ th quantile of the corresponding empirical CDF. Formally, letW be a random
maximum storm intensity, then the kth “q”-quantile is defined as the value “w” such
that

p(W ≤ w)≥ τ and p(W ≥ w)≥ 1− τ (8.1)

where τ = k
n .

jelsner
Sticky Note
insert "lifetime"



Elsner: “08˙ELSNER˙CH08” — 2012/9/24 — 16:48 — page 196 — #3

196 Intensity Models

20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0a b

Wind speed (m s−1)

C
um

ul
at

iv
e d

ist
rib

ut
io

n

0.0 0.4 0.8

20

30

40

50

60

70

80

Quantile
W

in
d 

sp
ee

d 
(m

 s−1
)

Figure 8.1 Fastest cyclone wind. (a) Cumulative distribution and (b) quantile.

Figure 8.1 shows the cumulative distribution and quantile functions for the 500
tropical cyclone intensities in the data frame. The CDF appears to have three dis-
tinct regions, indicated by the vertical lines. The function is nearly a straight line for
intensities less than 40m s−1 and greater than 65m s−1.
Is there a trend in cyclone intensities? Start with a plot of your data. By specify-

ing the first argument in the boxplot function as a model formula, you create a
sequence of conditional box plots. For example, to create a series of wind speed box
plot-conditional on year, type

> boxplot(LMI.df$WmaxS ˜ as.factor(LMI.df$SYear))

Note that the conditioning variable must be specified as a factor. The graph is useful
for examining the distribution of your wind speed data over time.
Recall from Chapter 5 that you created a series of box plots of the SOI by month

that minimized the amount of redundant ink. Here you reuse this code, modifying it
a bit, to create a series of wind speed box plots by year. Begin by creating a vector of
years and saving the length of the vector as a numeric object.

> yrs = 1967:2010

> n = length(yrs)

Next create the plot frame without the data and without the horizontal axis tic labels.
Then add a label to the vertical axis.

> plot(c(1967, 2010), c(15, 85), type="n", xaxt="n",

+ bty="n", xlab="",

+ ylab="Lifetime maximum wind speed (m/s)")

> axis(1, at=yrs, labels=yrs, cex=.5)

The function fivenum lists the minimum, first quartile, median, third quartile,
and maximum value, in that order, so to obtain the median value from a vector of
values called x, you type fivenum(x)[3]. You loop over each year indexed by i
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Figure 8.2 Lifetime highest wind speeds by year.

and plot the median wind speed value for that year as a point using the points func-
tion. In the same loop, you create vertical lines connecting theminimumwith the first
quartile and the third quartile with the maximum using the lines function.

> for(i in 1:n){

+ fn = fivenum(LMI.df$WmaxS[LMI.df$SYear == yrs[i]])

+ points(yrs[i], fn[3], pch=19)

+ lines(c(yrs[i], yrs[i]), c(fn[1], fn[2]))

+ lines(c(yrs[i], yrs[i]), c(fn[4], fn[5]))

+ }

Note that the subset operator [ is used to obtain wind speed values by year.
The results are shown in Figure 8.2. Herewe added the least-squares regression line

about the annual mean lifetime highest wind speed (black line) and the least-squares
regression line about the annual lifetime highest wind speed (red). Although there is
no upward or downward trend in the average cyclone intensity, there is an upward
trend to the set of strongest cyclones.
The theory of maximum potential intensity, which relates intensity to ocean heat,

refers to a theoretical limit given proper environmental conditions (Emanuel, 1988).
So the upward trend in the observed lifetime maximum intensity is consistent with
what you expect given the increasing ocean temperature.
It is informative then to explore the relationship of lifetime highest wind speed

to ocean temperature. In Chapter 2, you imported the monthly North Atlantic
sea-surface temperature (SST) data by typing

> SST = read.table("SST.txt", header=TRUE)

Here you subset the data using years since 1967 and only keep June values.

> lg = SST$Year >= 1967

> sst.df = data.frame(Yr=SST$Year[lg],

+ sst=SST$Jun[lg])
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Next, merge your SST data frame with your cyclone intensity data. This is done
using the merge function. Merge is performed on the common column name Yr as
specified with by argument.

> lmisst.df = merge(LMI.df, sst.df, by="Yr")

> head(lmisst.df[c("Yr", "WmaxS", "sst")])

Yr WmaxS sst

1 1967 36.3 21

2 1967 70.1 21

3 1967 48.6 21

4 1967 38.2 21

5 1967 24.3 21

6 1967 35.5 21

Note that since there are more instances of Yr in the intensity data frame (one for
each cyclone), the June SST values in the SST data frame get duplicated for each
instance. Thus all cyclones for a particular year get the same SST value.
You are interested in regressing cyclone intensity on SST as you did easlier on the

year, but the SST values are continuous rather than discrete. So you first create SST
intervals. This is done with the cut function.

> brk = quantile(lmisst.df$sst, prob=seq(0, 1, .2))

> sst.i = cut(lmisst.df$sst, brk, include.lowest=TRUE)

Your cuts divide the SST values into five equal quantiles (pentiles). The intervals rep-
resent categories ofmuch below (MB) normal, below (B) normal, normal (N), above
(A) normal, and much above (MA) normal SST. The choice of quantiles is a com-
promise between having enough years for a given range of SSTs and having enough
quantiles to assess differences.
You repeat this procedure for your SOI data. You create a merged data frame and

cut the SOI values into pentads.

> SOI = read.table("SOI.txt", header=TRUE)

> lg = SOI$Year >= 1967

> soi.df = data.frame(Yr=SOI$Year[lg],

+ soi=SOI$Sep[lg])

> lmisoi.df = merge(LMI.df, soi.df, by="Yr")

> brk = quantile(lmisoi.df$soi, prob=seq(0, 1, .2))

> soi.i = cut(lmisoi.df$soi, brk, include.lowest=TRUE)

Finally, you create a series of box plots corresponding to the SST intervals. This
time you use the boxplot function as described earlier. Begin by creating a character
vector of horizontal axis labels corresponding to the SST intervals and, to simplify the
code, save the wind speeds as a vector.

> xlabs = c("MB", "B", "N", "A", "MA")

> W = lmisst.df$WmaxS
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Figure 8.3 Lifetime highest intensity by (a) June SST and (b) September SOI.

You then save the output from a call to the boxplot function, making sure to turn
off the plotting option.

> y = boxplot(W ˜ sst.i, plot=FALSE)

Initiate the plot again and add regression lines through the medians and third quartile
values using the saved statistics of the box plot and regressing on the sequence from
one to five.

> boxplot(W ˜ sst.i, notch=TRUE, names=xlabs,

+ xlab="June SST Quantiles",

+ ylab="Lifetime Maximum Wind Speed (m/s)")

> x = 1:5

> abline(lm(y$stats[3, ] ˜ x), lwd=2)

> abline(lm(y$stats[4, ] ˜ x), col="red", lwd=2)

The results are shown in Figure 8.3. Here we repeat the code using the September
SOI covariate and create two box plots. The first pentad is the lowest 20 percent of all
values. The upper and lower limits of the boxes represent the first and third quartiles
of cyclone intensity. Themedian for each group is represented by the horizontal bar in
the middle of each box. Notches on the box sides represent an estimated confidence
interval about the median. The full range of the observed intensities in each group
is represented by the horizontal bars at the end of the dashed whiskers. In cases in
which the whiskers extend more than one and half times the interquartile range, they
are truncated and the remaining outlying points are indicated by open circles. The
red line is the best-fit line through the upper quartile and the black line is through the
medians.
The box plot summarizes the distribution of maximum storm intensity by pentiles

of the covariate. The graphs show an increase in upper quantiles of cyclone intensity
values with increasing valves of SST and SOI. As SST increases, so does the intensity
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of the strongest cyclones. Also as SOI increases (toward more La Niña-like condi-
tions), so does the intensity of the cyclones. Results from your exploratory analysis
give you a reason to continue your investigation.
The next step is to model these data. The box plots provide evidence that a model

for the mean will not capture the relationships as the trends are larger for higher
quantiles. So instead of linear regression, you use quantile regression.

8.1.2 Quantile Regression

The quantile function and the conditional box plots shown above are useful for
exploratory analysis. They are adequate for describing and comparing univariate dis-
tributions. However, since you are interested in modeling the relationship between
a response variable (intensity) and the covariates (SST and SOI), it is necessary to
introduce a regression model for the quantile function. Quantile regression extends
the ordinary least-squares regression model to conditional quantiles of the response
variable. Although you used linear regression on the conditional quantiles in the
earlier plots, this is not the same as quantile regression on the covariates.
Quantile regression allows you to examine the relationship without the need to

consider discrete levels of the covariate. Ordinary regression model specifies how
the mean changes with changes in the covariates while the quantile regression model
specifies how the quantile changes with changes in the covariates. Quantile regression
relies on empirical quantiles, but uses parameters to assess the relationship between
the quantile and the covariates.
The quantile regression model with two covariates is given by

μ̂(τ)= β̂0(τ)+ β̂1(τ)x1 + β̂2(τ)x2 (8.2)

where μ̂(τ) is the predicted conditional quantile of tropical cyclone intensity (W)
and where the β̂i’s are obtained by minimizing the piecewise linear least absolute
deviation function given by

1− τ

n ∑
wi<qi

|wi − qi|+ τ

n ∑
wi>qi

|wi − qi| (8.3)

for a given τ , where qi is the predicted τ quantile corresponding to observation i
(μ̂i(τ)).
The value of a simple trend analysis (involving only one variable—usually time)

is limited by the fact that other explanatory variables also might be trending. In the
context of hurricane intensity, it is well known that the ENSO cycle can alter the fre-
quency and intensity of hurricane activity on the seasonal time scale. A trend over
time in hurricane intensity could reflect a change in this cycle. Thus it is important to
look at the trend after controlling for this factor. Here we show the trend as a function
of Atlantic SST after controlling for the ENSO cycle. Thus we answer the question
of whether the data support the contention that the increasing trend in the intensity
of the strongest hurricanes is related to an increase in ocean warmth conditional on
ENSO.
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Here we use the quantreg package for performing quantile regression developed
by Roger Koenker. Load the package and print a BibTeX citation.

> require(quantreg)

> x = citation(package="quantreg")

> toBibtex(x)

@Manual{,

title = {quantreg: Quantile Regression},

author = {Roger Koenker},

year = {2011},

note = {R package version 4.76},

url = {http://CRAN.R-project.org/package=quantreg},

}

Begin with median regression. Here τ is set to 0.5 and is specified with the
tau argument. The function rq performs the regression. The syntax for the model
formula is the same as before. The output is assigned to the object qrm.

> Year = lmisst.df$Yr

> W = lmisst.df$WmaxS

> SOI = lmisoi.df$soi

> SST = lmisst.df$sst

> qrm = rq(W ˜ Year + SST + SOI, tau=.5)

Rather than least-squares or maximum likelihoods, a simplex method is used to
fit the regression. It is a variant of the Barrodale and Robert’s (1974) approach
described in Koenker and d’Orey (1987). If your data set has more than a few thou-
sand observations, it is recommended that you change the default by specifying
method="fn", which invokes the Frisch-Newton algorithm described in Portnoy
and Koenker (1997).
You obtain a concise summary of the regression results by typing

> qrm

Call:

rq(formula = W ˜ Year + SST + SOI, tau = 0.5)

Coefficients:

(Intercept) Year SST SOI

238.039 -0.221 11.009 0.827

Degrees of freedom: 500 total; 496 residual

The output shows the estimated coefficients and information about the degrees of
freedom. You find that the median lifetime intensity decreases with year (negative
trend) and increases with SST and the SOI.
To obtain more details, you type

> summary(qrm)
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Table 8.1 Coefficients of the median regressionmodel.

Coefficients Lower bd Upper bd

(Intercept) 238.04 11.67 414.78
Year −0.22 −0.33 −0.05
SST 11.01 0.73 16.99
SOI 0.83 −0.65 1.93

Table 8.1 gives the estimated coefficients and confidence intervals (95%) for these
parameters. The confidence intervals are computed by the rank inversion method
developed in Koenker (2005).
The confidence interval includes zero for Year and the SOI indicating these terms

are not significant in explaining the median per cyclone intensity. However, the
SST variable is significant and positive. The relationship indicates that for every 1◦C
increase in SST, the median intensity increases by 11m s−1.
But this seems too large (by an order of magnitude), given the box plot (Fig. 8.3)

and the range of SST values.

> range(SST)

[1] 20.8 21.8

The problem is due to from the other variables in the model. To see this, refit the
regression model after removing the variables that are not significant.

> qrm2 = rq(W ˜ SST, tau=.5)

> summary(qrm2)

Call: rq(formula = W ˜ SST, tau = 0.5)

tau: [1] 0.5

Coefficients:

coefficients lower bd upper bd

(Intercept) -14.23 -141.11 63.12

SST 2.23 -1.44 8.18

Now the relationship indicates that for every 1◦C increase in SST, the median inten-
sity increases by 2.23 m s−1. This amount is not statistically significant as you might
have guessed from your exploratory plot.
The theory of maximum potential intensity relates a theoretically highest wind

speed to ocean temperature so it is interesting to consider quantiles above themedian.
You repeat themodeling exercise using τ = 0.9. Here again, you find year and SOI not
significant, so you exclude them in your final model.

> summary(rq(W ˜ SST, tau=.9), se="iid")
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Table 8.2 Coefficients of the 90th percentile regressionmodel.

Value Std. Error t Value Pr(>|t|)
(Intercept) −307.30 68.69 −4.47 0.00
SST 17.16 3.22 5.33 0.00
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Figure 8.4 Quantile
regressions of lifetime
maximum intensity on
SST.

Here instead of the rank-inversion CI, you obtain a more conventional table of coef-
ficients (Table 8.2) that includes standard errors, t-statistics, and p-values using the
se="iid" argument in the summary function.
As anticipated from theory and your exploratory data analysis, you see a statisti-

cally significant positive relationship between cyclone intensity and SST for the set of
tropical cyclones within the top 10 percent of intensities. The estimated coefficient
indicates that for every 1◦C increase in SST, the upper percentile intensity increases
by 17.2 m s−1.
Other options exist for computing standard errors including a bootstrap approach

(se="boot"; see Koenker [2005]), which produces a standard error in this case
of 4.04 (difference of 26 percent). The larger standard error results in a significance
level that is somewhat less, but the results still provide conclusive evidence of a climate
change signal.
To visualize the intensity–SST relationship inmore detail, you plot several quantile

regression lines on a scatter plot. For reference, you include the least-squares regres-
sion line. The code is given here, and the results are shown in Figure 8.4. Note that
you use type="n" in the plot function and use the points function to add them on
top of the lines. The 0.1, 0.25, 0.5, 0.75, and 0.9 quantile regression lines are shown in
gray and the least-squares regression line about the mean is shown in red. Trend lines
are close to horizontal for the weaker tropical cyclones but have a significant upward
slope for the stronger cyclones.
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Figure 8.5 SST coefficient from a regression of LMI on SST and SOI.

To see all of the quantile regressions for a particular model, you specify a tau=-1.
For example, save the quantile regressions of wind speed on SST and SOI in an object
by typing

> model = rq(W ˜ SST + SOI, tau=-1)

This will cause the rq function to find the entire sample path of the quantile process.
The returned object is of class rq.process. You plot the regression coefficients for
each variable in the model as a function of quantile by typing

> plot.rq.process(model)

The result for the SST variable is plotted in Figure 8.5. Values of τ range from
0.025 to 0.975 in intervals of 0.05. The 95 percent confidence band (gray) is based
on a bootstrap method. The plot shows the rising trend of the most intense hurri-
canes as the ocean temperatures rise after accounting for the El N.no. The trends
depart from zero for quantiles above about 0.4 and become significant for cyclones
that exceed about 50 m s−1. Additional capabilities for quantile modeling and infer-
ence are available in the quantreg package. Next, we consider a model for the most
intense hurricanes.

8.2 FASTEST HURRICANE WINDS

Eighty percent of all hurricane damage is caused by less than 20 percent of the worst
events (Jagger et al., 2008). The rarity of severe hurricanes implies that empirical
models that estimate the probability of the next big one will be unreliable. Extreme
value theory provides a statistical framework for modeling these rare wind events.
Here you employ these models on hurricane wind speeds.
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8.2.1 Exploratory Analysis

To begin, you plot the lifetime maximum wind speeds for all North Atlantic tropical
cyclones from the period 1967 to 2010 as a histogram. You use the same data set as in
§8.1, where W is the vector of wind speeds.

> W = LMI.df$WmaxS

> hist(W, main="", las=1, col="gray", border="white",

+ xlab="Wind Speed (m/s)")

> rug(W)

The function uses 5 m s−1 intervals and the minimum intensity is 17.6 m s−1.
Figure 8.6 shows a peak in the distribution between 20 and 40 m s−1 and a long

right tail. Values in this tail are of interest. For a model of the fastest winds, you want
to include enough of these high values that your parameter estimates are reliable (they
do not change by much if you add or remove a few values). But you also want to
be careful not to include too many to ensure that the values represent the strongest
hurricanes.

8.2.2 Return Periods

How long can you expect to wait for the next big hurricane? A return period is the
average recurrence interval. The recurrence interval is the time between successive
hurricanes of a given intensity or stronger (events). Suppose you define an event as a
hurricane with a threshold intensity of 75 m s−1, then the annual return period is the
inverse of the probability that such an event will be exceeded in any one year. Here
“exceeded” refers to a hurricane with an intensity of at least 75 m s−1.
For instance, a 10-year hurricane event has a 1/10 = 0.1 or 10 percent chance of

having an intensity exceeding a threshold level in any one year and a 50-year hurri-
cane event has a 0.02 or 2 percent chance of having an intensity exceeding a higher
threshold level in any one year. These are statistical statements. On average, a 10-year
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event will occur once every 10 years. The interpretation requires that for a year or
set of years in which the event does not occur, the expected time until it occurs next
remains 10 years, with the 10-year period resetting each year.
Note, there is a monotonic relationship between the intensity of the hurricane

event (return level) and the return period. The return period for a 75-m s−1 return
level must be longer than the return period for a 70-m s−1 return level. The empirical
relationship is expressed as

RP=
n+ 1
m

(8.4)

where n is the number of years in the record andm is the intensity rank of the event.1

You use this formula to estimate return periods for your set of hurricanes. First
assign the record length and sort the lifetime maximum wind speeds in decreasing
order. Then list the speeds of the six most intense hurricanes.

> n = length(1967:2010)

> Ws = sort(W, decreasing=TRUE)

> round(Ws, 1)[1:6]

[1] 83.8 82.6 80.3 79.8 79.4 78.7

Finally, compute the return period for these six events using the above formula,
rounding to the nearest year.

> m = rev(rank(Ws))

> round((n + 1)/m, 0)[1:6]

[1] 45 22 15 11 9 8

Thus, an 83.8-m s−1 hurricane has a return period of 45 years and a 78.7-m s−1 hur-
ricane has a return period of 8 years. Said another way, you can expect a hurricane of
at least 80.3 m s−1 once every 15 years. The threshold wind speed for a given return
period is called the return level.
Your goal here is a statistical model that provides a continuous estimate of the

return level (threshold intensity) for a set of return periods. A model is more useful
than a set of empirical estimates because it provides a smoothed return-level estimate
for all return periods, and it allows you to estimate the return level for a return period
longer than your data record.
The literature provides some examples of hurricane return periods. Rupp and

Lander (1996) use the method of moments on annual peak winds over Guam to
determine the parameters of an extreme value distribution leading to estimates of
return periods for extreme typhoon winds. Heckert et al. (1998) use the peaks-over-
threshold method and a reverse Weibull distribution to obtain return periods for
extreme wind speeds at locations along the U.S. coastline.
Walshaw (2000) uses a Bayesian approach to jointly model extreme winds from

tropical and nontropical systems. Jagger andElsner (2006) use amaximum likelihood

1 Sometimes RP= n/(m− 0.5) is used instead.
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and Bayesian approach to model tropical cyclone winds in the vicinity of the United
States conditional on climate factors. In the former study, the Bayesian approach
allows them to take advantage of information from nearby sites, and in the later study
it allows them to take advantage of older, less reliable data.
Here you use functions in the ismev package (Coles and Stephenson, 2011)

to fit an extreme-value model for hurricane winds using the method of maximum
likelihoods. We begin with some backgroundmaterial.

8.2.3 ExtremeValue Theory

Extreme value theory is a branch of statistics. It concerns techniques and models
for describing the rare event rather than the typical, or average, event. It is similar
to the central limit theory. In that if considers the limiting distributions of indepen-
dent identically distributed (iid) random variables under an affine transformation.2

According to the central limit theorem, the mean value of an iid random variable x
converges to a normal distribution with mean 0 and variance 1 under the affine trans-
formation (x̄−μ)/

√
nσ 2), whereμ and σ are the mean and standard deviation of x,

respectively.
Similarly, if the distribution of the maxima under some affine transformation con-

verges, then it must converge to a member of the generalized extreme value (GEV)
family (Embrechts et al., 1997). The maxima of most continuous random variables
converge to a nondegenerate random variable. This asymptotic argument is used to
motivate the use of extreme value models in the absence of empirical or physical evi-
dence for assigning an extreme-level to a process. However, the argument does not
hold for the maxima of discrete random variables including the Poisson and negative
binomial. An excellent introduction to this topic is provided in Coles (2001).
Although by definition extreme values are scarce, an extreme-value model allows

you to estimate return periods for hurricanes that are stronger than the strongest one
in your data set. In fact, your goal is to quantify the statistical behavior of hurricanes
extrapolated to unusually high levels. Extreme value theory provides models for this
kind of extrapolation.
Given a set of observations from a continuous process, if you generate a sample

from the set, take the maximum value from the sample, and repeat the procedure
many times, you obtain a distribution that is different from that of the original
(parent) distribution. For instance, if the observations are described by a normal
distribution, the distribution of the maxima is described by a Gumbel distribution.
To see this, plot a density curve for the standard normal distribution and compare

it to the density curve of the maxima from samples of size 100 taken from the same
distribution. Here you generate 1,000 samples saving the maxima in the vector m.

> par(mfrow=c(1, 2))

> curve(dnorm(x), from=-4, to=4, ylab="Density")

> m = numeric()

2 Linear transformation followed by a translation.
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Figure 8.7 Density curves. (a) Standard normal and (b) maxima from samples of the standard
normal.

> for(i in 1:1000) m[i] = max(rnorm(100))

> plot(density(m), xlab="Maxima of x", main="")

The results are shown in Figure 8.7. Themaxima belong to a GEV distribution that is
shifted relative to the parent distribution and positively skewed.The three parameters
of the GEV distributions are determined by values in the tail portion of the parent
distribution.

8.2.4 Generalized ParetoDistribution

A GEV distribution fits the set of values consisting of the single strongest hurricane
each year. Alternatively, consider the set of per-cyclone lifetime strongest winds in
which you keep all values exceeding a given threshold level, say 60 m s−1. Some years
will contribute no values to your set and some years will contribute two or more.
A two-parameter generalized Pareto distribution (GPD) family describes this set

of fast winds. The threshold choice is a compromise between retaining enough hur-
ricanes to estimate the distribution parameters with sufficient precision but not too
many that the intensities fail to be described by a GPD.
Specifically, given a threshold wind speed u, youmodel the exceedances,W −u, as

samples from a GPD family so that for an individual hurricane with maximum winds
W , the probability thatW exceeds any value v given that it is above the threshold u is
given by

p(W > v|W > u)=

{
exp([− (v− u)]/σ ) when ξ = 0

(1+ ξ
σ
[v− u])−1/ξ otherwise

(8.5)

where σ > 0 and σ + ξ(v − u) ≥ 0. The parameters σ and ξ are scale and shape
parameters of the GPD, respectively. Thus you can write p(W > v|W > u) =

GPD(v− u|,σ ,ξ).
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To illustrate, copy the following code to create a function called sGpd for the
exceedance probability of a GPD.

> sGpd = function(w, u, sigma, xi){

+ d = (w - u) * (w > u)

+ sapply(xi, function(xi) if(xi==0) exp(-d/sigma)

+ else

+ ifelse(1 + xi/sigma * d < 0, 0,

+ (1 + xi/sigma * d)ˆ(-1/xi)))

+ }

Given a threshold intensity u, the function computes the probability that a hurricane
at this intensity or higher picked at random will have a maximum wind speed of at
least W . The probability depends on the scale and shape parameters. For instance,
given a scale of 10 and a shape of 0, the probability that a random hurricane will have
a maximumwind speed of at least 70 m s−1 is obtained by typing

> sGpd(w=70, u=60, sigma=10, xi=0)

[1] 0.368

The scale parameter controls how fast the probability decays for values near the
threshold. The decay is faster for smaller values of σ . The shape parameter controls
the length of the tail. For negative values of ξ , the probability is zero beyond a cer-
tain intensity. With ξ = 0 the probability decay is exponential. For positive values of
ξ , the tail is described as “heavy” or “fat,” indicating a decay in the probabilities gen-
tler than logarithmic. Figure 8.8 compares exceedance curves for different values of σ
with ξ = 0 and for different values of ξ with σ = 10, keeping the threshold value at
60 m s−1.
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Figure 8.8 Exceedance curves for the generalized Pareto distribution. (a) Different σ ’s with ξ = 0
and (b) different ξ ’s with σ = 10.
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8.2.5 Extreme IntensityModel

Given your set of lifetime maximum wind speeds in the object W, you use the
gpd.fit function from the ismev package to find the scale and shape parameters
of the GPD using the method of maximum likelihood. Here you set the threshold
wind speed to 62 m s−1 again as a compromise between high enough to capture only
the strongest hurricanes and low enough to have a sufficient number of wind speeds.
The output is saved as a list object and printed to your screen.

> require(ismev)

> model = gpd.fit(W, threshold=62)

$threshold

[1] 62

$nexc

[1] 42

$conv

[1] 0

$nllh

[1] 124

$mle

[1] 9.832 -0.334

$rate

[1] 0.084

$se

[1] 2.794 0.244

This is a probability model that specifies the chance of a random hurricane obtaining
any intensity value given that it has already reached the threshold intensity.
The function prints the threshold value, the number of extreme winds in the data

set (nexc) as defined by the threshold, the negative log-likelihood value (nllh), the
maximum-likelihood parameter estimates (mle), and the rate, which is the number
of extreme winds divided by the total number of hurricane (per-hurricane rate).
You use your sGpd function to compute probabilities for a sequence of winds from

the threshold value to 85m s−1 in increments of 0.1 m s−1.

> v = seq(63, 85, .1)

> p = sGpd(v, u=62, sigma=model$mle[1],

+ xi=model$mle[2])

You then use the plot method to graph them.
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> plot(v, p, type="l", lwd=2, xlab="Wind Speed (m/s)",

+ ylab="p(W > v | W > 62)")

To turn the per-hurricane rate into an annual rate, you divide the number of
extreme winds by the record length.

> rate = model$nexc/length(1967:2010)

> rate

[1] 0.955

Thus, the annual rate of hurricanes at this intensity or higher over the 44 years in the
data set is 0.95 per year. Recall from the Poisson distribution that this implies a

> round((1 - ppois(0, rate)) * 100, 2)

[1] 61.5

percent chance that next year a hurricane will exceed this threshold.

8.2.6 Intensity and FrequencyModel

The GPD describes hurricane intensities above a threshold wind speed. You know
from Chapter 7 that the Poisson distribution describes the frequency of hurricanes
above some intensity. Therefore you need to combine these two descriptions.
Let the annual number of hurricanes whose lifetime maximum intensity exceeds u

have a Poisson distributionwithmean rateλu. Then the average number of hurricanes
with winds exceeding v (where v≥ u) is given by

λv = λu × p(W > v|W > u) (8.6)

This allows you to model hurricane occurrence separate from hurricane intensifi-
cation. This is helpful because processes that govern hurricane frequently are not
necessarily the same as the processes that govern hurricane intensity. Moreover, from
a practical perspective, rather than a return rate per hurricane occurrence, this speci-
fication allows you to obtain an annual return rate on the extremewinds. This is more
meaningful for the business of risk management and insurance.
Now, the probability that the highest lifetime maximum intensity in a given year

will be less than v is

p(Wmax ≤ v)= exp(−λv) (8.7)

= exp[−λu ×GPD(v− u|σ ,ξ)] (8.8)

The return period RP is the inverse of the probability thatWmax exceeds v, where v is
called the return level. You compute the return period and create a return period plot
using

> rp = 1/(1 - exp(-rate * p))

> plot(rp, v, type="l", lwd=2, log="x",

+ xlab="Return Period (yr)",

+ ylab="Return Level (m/s)")
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Figure 8.9 Return
periods for the fastest
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Figure 8.9 shows the results. Return levels increase with increasing return period.
The model estimates that an 81-m s−1 hurricane will occur on average once every
27 years and an 85-m s−1 hurricane will occur on average once every 100 years. How-
ever, based on the results in §8.1, these return periodsmight be getting shorter due to
increasing ocean heat.

8.2.7 Confidence Intervals

You obtain confidence limits on the return period estimates shown in Figure 8.9 using
a bootstrap approach (see Chapter 3). Suppose you are interested in the 95 percent
CI on the return period of a 73-m s−1 hurricane. Your model tells you that the best
estimate for the return period is 5 years.
To obtain the CI, you randomly sample your set of wind speeds with replacement

to create a bootstrap replicate. You run your model on this replicate and get an esti-
mate of the return period. You repeat this procedure 1,000 times each time generating
a new return period estimate. You then treat the bootstrapped return periods as a dis-
tribution and find the lower and upper quantiles corresponding to the 0.025 and 0.975
probabilities.
To implement this procedure, you type

> thr = 62

> v = 73

> rps = numeric()

> m = 1000

> for(i in 1:m){

+ Wbs = sample(W, size=length(W), replace=TRUE)

+ modelbs = gpd.fit(Wbs, threshold=thr, show=FALSE)

+ ps = sGpd(v, u=thr, sigma=modelbs$mle[1],

+ xi=modelbs$mle[2])
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+ rps[i] = 1/(1 - exp(-rate * ps))

+ }

> ci = round(quantile(rps, probs=c(.025, .975)))

The procedure provides a 95 percent CI of (3, 9) years about the estimated 5-year
return period for a 73-m s−1 hurricane. You can estimate other CIs (e.g., 90%) by
specifying the relevant percentiles in the quantile function.

8.2.8 Threshold Intensity

TheGPDmodel requires a threshold intensity u. The choice is a trade-off between an
intensity high enough that the positive residual values (W−u≥ 0) follow aGPD, but
low enough that there are enough values to accurately estimate the GPD parameters.
For an arbitrary intensity level, you can compute the average of the positive resid-

uals (excesses). For example, at an intensity of 60 m s−1, the mean excess in units of
m s−1 is

> mean(W[W >= 60] - 60)

[1] 8

By increasing the level, say to 70m s−1, the mean excess decreases to 6.23 m s−1.
In this way, you compute a vector of mean excesses for a range of potential thresh-

old intensities. The relationship between the mean excess and threshold is linear if
the residuals follow aGPD. A plot of the mean excess across a range of intensity levels
(mean residual life plot) helps you choose a threshold intensity.
The function mrl.plot is part of the ismev package that makes the plot for you.

Type

> mrl.plot(W)

> grid()
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The result is shown in Figure 8.10. There is a general decrease in the mean excess
with increasing intensity levels. The 95 percent confidence band is shown in gray. The
decrease is linear above an intensity value of 62 m s−1, indicating that any threshold
chosen above this results in a set of wind speeds that follow a GPD. To maximize the
number of wind speed values for estimating the model parameters, the lowest such
threshold is optimal.
Alternatively, you can proceed by trial and error. You calculate the parameters of

the GPD for increasing thresholds and choose the minimum threshold at which the
parameter values remain nearly fixed.

8.3 CATEGORICAL WIND SPEEDS BY COUNTY

Hurricane wind speeds are often described with a Saffir–Simpson category. If possi-
ble you should avoid using categories for analysis and modeling. However, historical
hurricane intensities data are sometimes provided only by category.
Here you model county-level categorical wind data. The data represent direct and

indirect hurricane hits by Saffir—Simpson category. The data are described and orga-
nized in Chapter 6. The wind speed category and count data are saved in separate
binary files. Make them available in your working directory by typing

> load("catwinds.RData")

> load("catcounts.RData")

The list of data frames is stored in the object winds. Lists are generic objects and can
be of any type. To see the data frame for Cameron County, Texas (the first county
in the list where the counties are numbered from 1 to 175 starting with south Texas),
type

> winds[[1]]

Year W

1 1909 [42, 50]

2 1909 [33, 50]

3 1910 [33, 42]

4 1919 [33, 50]

5 1933 [42, 50]

6 1933 [50, 58]

7 1967 [50, 58]

8 1980 [50, 58]

9 2008 [33, 42]

The data frame contains a numerical year variable and a categorical survival variable.
The survival variable has three components with the first two indicating the wind
speed bounds of the cyclone. The bounds correspond to Saffir—Simpson cyclone
categories.
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The data frame of corresponding hurricane counts is stored in the object counts.
To see the first 10 years of counts fromCameron County, type

> counts[1:10, 1]

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909

0 0 0 0 0 0 0 0 0 2

There were no hurricanes in this part of Texas during the first nine years of the twen-
tieth century, but there were two in 1909. The first eight county names in the data set
are listed by typing

> colnames(counts)[1:8]

[1] "CAMERON" "WILLACY" "KENEDY"

[4] "KLEBERG" "NUECES" "SAN_PATRICIO"

[7] "ARANSAS" "REFUGIO"

You use the two-parameter Weibull distribution to model the wind speed cat-
egories. The survival function (S(w) = P(W > w)) for the Weibull distribution
(W ∼ Weib(b,a)) is

S(w)= exp(−
(w
b

)a
) (8.9)

where a and b are the shape and scale parameters, respectively.
The Weibull distribution has the property that if W ∼ Weib(a,b), then a linear

transformation of W results in a variable whose distribution is also Weibull (i.e.,
kW ∼ Weib(kb,a)). Similarly, a power transformation results in a variable whose
distribution is Weibull (i.e.,Wk ∼ Weib(bk,a/k)).
However your data do not contain single wind speed values. Instead for a particular

cyclone, the affected county has a lower and an upperwind speedbound. This is called
censored data. You know that the wind speed is at least as strong as the lower bound
but it could be stronger or weaker than the upper bound.3 In other words,W lies in an
interval [Wl,Wu], and the true wind speed follows a Weibull distribution. So instead
of using the logarithm of the density function in the Weibull likelihood, you use the
logarithm of the probability distribution function over the interval.

8.3.1 Marked Poisson Process

These data were originally modeled in Jagger et al. (2001). This model considered
annual winds by keeping only the highest wind event for that year. That is, in a
county that was hit by multiple hurricanes in a given year, only the strongest wind
was used. Here you rework the analysis using a marked Poisson process meaning the
wind events are independent and the number of events follows a Poisson distribution
with a rate λ. The marks are the wind speed interval associated with the event. In this
way, all events are included.

3 Censored data attaches.time1 and.time2 to the bounds, but here thewinds are from the same
time.
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You assume that the marks have aWeibull distribution with shape parameter a and
scale parameter b. The scale parameter has units of wind speed in meter per second.
Note that the mean exceedance wind speed is given by μ = bΓ(1+ 1/a) as can be
seen by integrating the survival function (Eq. 8.9). The probability that the yearly
maximumwind is less than or equal tow can be found by determining the probability
of not seeing a wind of this speed.
Given the rate of events (λ) and the probability of an event exceedingw, the rate of

events exceeding w is a thinned Poisson process with a rate given by

r(w)= λexp(−(w/b)a) (8.10)

So the probability of observing no events is exp( − r(w)), and, the probability
distribution of the yearly maximumwinds is given by

Fmax(w)= exp(−λexp(− (w/b)a)) (8.11)

The return level (w) in years (n) associated with the return period is given 1/n =
1 − F(w), the long run proportion of years with events exceeding w. Solving for w
gives

w= b

⎛
⎝log

⎛
⎝ λ

log
(

n
n−1

)
⎞
⎠
⎞
⎠

1
a

(8.12)

which is approximately

w≈ b(log(λ(n−.5)))
1
a (8.13)

8.3.2 Return Levels

To help with the modeling, we packaged the functions Weibull survival (sWeib),
distribution of maximum winds (sWeibMax), and return level (rlWeibPois) in
the fileCountyWinds.R. Use source to input these functions by typing

> source("CountyWinds.R")

To see how these functions work, suppose the annual hurricane rate for a county is
λ= 0.2 and the Weibull survival parameters are a = 5 and b = 50 m s−1. Then, to
estimate the return level associated with a 100-year return period wind event, you
type

> rlWeibPois(n=100, a=5, b=50, lambda=.2)

100

[1,] 62.2

Thus, you can expect to see a hurricane wind event of magnitude 62.2 m s−1 in the
county, on average, once every 100 years.
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Note that since the event frequency is 1 in 5 years (0.2), the return period in years
is given by 1/[1-exp(-0.2)] or

> round(1/(1 - exp(-.2)))

[1] 6

Note also that theWeibull distribution has support on the real number line to positive
infinity. This means that there will be a nonzero probability of a wind exceeding any
magnitude.
You can generate a series of return levels using the rlWeibPois function and the

assigned parameters by typing

> rl = round(rlWeibPois(n=c(5, 10, 20) *
+ 10ˆ(rep(0:2, each=3)), a=5, b=50, lambda=.2), 1)

> rl

5 10 20 50 100 200 500 1000 2000

[1,] NaN 45.7 53.2 59 62.2 64.9 67.9 69.8 71.5

Thus, on average, the county can expect to see a cyclone of 45.7 m s−1 once every
10 years. For a given return period, the return level scales linearly with the scale
parameter b, but to a power of 1/a with the shape parameter. Note that the function
returns an NaN (not a number) for the 5-year return level since it is below 33 m s−1

(minimum hurricane intensity threshold).

8.3.3 Covariates

The earlier return-level computation assumes that all years have equal probability of
events and equal probability of wind speed exceedances. This is a climatology model.
Youmight be able to do better by conditioning on environmental factors.You include
covariate effects by modeling the transformed parameters logλ, logb, and loga as
linear functions of the covariates NAO, SST, SOI, and SSN (see Chapter 6).
For a given county, let Li andUi be the lower and upper bounds for each observa-

tion as given in the Table 6.1 and yj be the yearly cyclone count. Furthermore, assume
that [θλ,θb,θa] is a vector of model parameters associated with covariate matrices
given asXλ,Xb, andXa of sizem× pλ,n× pa , and n× pb, respectively.
The log-likelihood function of the process for a given county with n observations

overm years is

LL(θ)=
n

∑
i=1

log(exp(− (Li/bi)ai)− exp(− (Ui/bi)ai))+

m

∑
j=1

yj log(λi)−λi − log(i!)

log(ai)= Xa[i, ] · θa
log(bi)= Xmu[i, ] · θb
log(λi)= Xλ[i, ] · θλ
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The log-likelihood separates into two parts: one for the counts and another for the
wind speeds. This allows you to use maximum-likelihood estimation (MLE) for the
count model parameters separate from the MLE for the wind speed model parame-
ters. The count model is a generalized linearmodel, and you can use the glm function
as you did in Chapter 7.
For thewind speeds, you can build the likelihood function (see Jagger et al. [2001])

or use a package. The advantage of the latter is greater functionality through the use
of plot, summary, and predict methods. You can usually find an R package to do what
you need using familiar methods. If not, you can write an extension to an existing
package. If you write an extension, send it to the package maintainer so that your
functions get added to future versions of the package.
The gamlss package together with the gamlss.dist package provides extensions

to the glm function from the stats package and to the gam function from the gam
package for generalized additive models. The gamlss.cens package allows you to fit
parametric distributions to censored and interval data created using the Surv func-
tion in the Survival package for usewith the gamlss.dist package.With this flexibility,
you can estimate the parameters of the return-levelmodel without the need to writing
code for the likelihood or its derivatives.
Youmake the packages available to your working directory by typing

> require(gamlss)

> require(gamlss.cens)

You are interested in estimating return levels at various return periods. You can
do this using the MLE for the model parameters along with a set of covariates
using rlWeibPois as described earlier. The covariate parameters have a degree of
uncertainty due to finite sample size.
The return level parameters also have uncertainty. You propagate this uncer-

tainty to your final return-level estimates in two ways. One way is to estimate
the variance of the return level as a function of the parameter covariance matrix
(delta method). Another way is to sample the parameters assuming that they have a
normal distribution with a mean equal to the MLE estimate and with a variance—
covariance matrix given by Σ, where Σ is a block diagonal matrix composed of a
pλ × pλ covariance matrix from the count model and a pa + pb × pa + pb covari-
ance matrix from the wind speed model. The parameters and the covariances are
returned from the vcov function on the model object returned from glm and
gamlss.
First, you generate samples of the transformed parameters and save them in sep-

arate vectors (logλ, logb, loga). Then, you take the antilog of the inner product of
the parameters and the corresponding set of their predictions based on the covari-
ates. You then pass these values and your desired return periods to rlWeibPois to
obtain a return level for each return period of interest. Finally, you use the function
sampleParameters provided in CountyWinds.R to sample the return levels for
a given set of predictors and return periods.
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8.3.4 Miami-Dade

The model can be applied to any county that has experienced more than a few hurri-
canes. Since not all counties have the same size, comparing wind probabilities across
counties is not straightforward. By contrast, county-wide return levels are useful to
local officials. You will model the county data with and without the covariates. As an
example, here youmodel the categorical wind data for Florida’sMiami-DadeCounty.
First, you extract the wind speed categories and the counts.

> miami.w = winds[[57]]

> Year = as.numeric(row.names(counts))

> H = counts[, 57]

> miami.c = data.frame(Year=Year, H=H)

Since you have two separate data sets, it is a good idea to see whether the cyclone
counts match the winds by year and number. You do this by typing

> all(do.call("data.frame", rle(miami.w$Year))-

+ miami.c[miami.c$H > 0, c(2, 1)] == 0)

[1] TRUE

You first fit the counts to a Poisson distribution by typing

> fitc = glm(H ˜ 1, data=miami.c, family="poisson")

Next, you fit the wind speed intervals to aWeibull distribution by typing

> WEIic = cens(WEI, type="interval", local=FALSE)

> fitw = gamlss(W ˜ 1, data=miami.w, family=WEIic,

+ trace=FALSE)

Finally, you generate samples of return levels for a set of return periods by typing

> rp = c(5, 10, 20) * 10ˆ(rep(0:2, each=3))

> rl = sampleParameters(R=1000, fitc=fitc,

+ fitw=fitw, n=rp)

You display the results with a series of box plots.

> boxplot(rl[, , ], xlab="Return Period (yr)",

+ ylab="Return Level (m/s)", main="Miami-Dade")

The results are shown in Figure 8.11, which also includes a plot using data fromGalve-
ston, Texas. The median return level is shown with a dot. Given the model and the
data, a 50-year return period is a hurricane that produces winds of at least 60 m s−1

in the county. The return level increases with increasing return period. The uncer-
tainty levels represent the upper and lower quartile values and the ends of thewhiskers
define the 95 percent confidence interval.
Andrew struck Miami in 1992 as a category-five hurricane with 70 m s−1 winds.

Yourmodel indicates that themost likely return period for a cyclone of thismagnitude
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Figure 8.11 Return periods for winds in (a) Miami-Dade and (b) Galveston counties.

is 1,000 years, but it could be as short as 100 years. Return levels are higher at all
return periods forMiami compared to Galveston.Miami is closer to the main tropical
cyclone development region of the North Atlantic.
This chapter showed how to create models from cyclone intensity data. We began

by considering the set of lifetime maximumwind speeds for basinwide cyclones and a
quantile regressionmodel for trends.We then showed how tomodel the fastest winds
using models from extreme-value theory. The models estimate the return period of
winds exceeding threshold intensities. We finished with a model for interval wind
data that describes the hurricane experience at the county level.We demonstrated the
model on data fromMiami-Dade and Galveston Counties. A categorical wind speed
model can be used on tornado data, where intensities are estimated from damages in
intervals defined by the Fujita scale.

jelsner
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