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7
FREQUENCY MODELS

“Statistics is the grammar of science.”
—Karl Pearson

Here in Part II, we focus on statistical models for understanding and predicting hur-
ricane climate. This chapter shows you how to model hurricane occurrence. This is
done using the annual count of hurricanes making landfall in the United States. We
also consider the occurrence of hurricanes across the basin and by origin.
We begin with exploratory analysis and then show you how to model counts with

Poisson regression. Issues of model fit, interpretation, and prediction are considered
in turn. The topic of how to assess forecast skill is examined including how to per-
form cross-validation. Alternatives to the Poisson regression model are considered.
Logistic regression and receiver operating characteristics (ROCS) are also covered.

7.1 COUNTS

You use the data set US.txt which contains a list of tropical cyclone counts by year
(see Chapter 2). The counts indicate the number of hurricanes hitting in the United
States (excluding Hawaii). Input the data, save them as a data frame object, and print
out the first six lines by typing

> H = read.table("US.txt", header=TRUE)

> head(H)

Year All MUS G FL E

1 1851 1 1 0 1 0

2 1852 3 1 1 2 0

3 1853 0 0 0 0 0

4 1854 2 1 1 0 1
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5 1855 1 1 1 0 0

6 1856 2 1 1 1 0

The columns include year Year, number of U.S. hurricanes All, number of major
U.S. hurricanes MUS, number of U.S. Gulf coast hurricanes G, number of Florida hur-
ricanes FL, and number of East coast hurricanes E. Save the number of years in the
record as n and the average number hurricanes per year as rate.

> n = length(H$Year); rate = mean(H$All)

> n; rate

[1] 160

[1] 1.69

The average number of U.S. hurricanes is 1.69 per year over these 160 years.
First plot a time series and a distribution of the annual counts. Together, the two

plots provide a nice summary of the information in your data relevant to anymodeling
effort.

> par(las=1)

> layout(matrix(c(1, 2), 1, 2, byrow=TRUE),

+ widths=c(3/5, 2/5))

> plot(H$Year, H$All, type="h", xlab="Year",

+ ylab="Hurricane Count")

> grid()

> mtext("a", side=3, line=1, adj=0, cex=1.1)

> barplot(table(H$All), xlab="Hurricane Count",

+ ylab="Number of Years", main="")

> mtext("b", side=3, line=1, adj=0, cex=1.1)

The layout function divides the plot page into rows and columns as specified in the
matrix function (first argument). The column widths are specified using the width
argument. The plot symbol is a vertical bar (type="h"). The tic labels on the vertical
axis are presented in whole numbers consistent with count data.
Figure 7.1 shows the time series and distribution of annual hurricanes over the 160-

year period. There is a total of 271 hurricanes. The year-to-year variability and the
distribution of counts appear to be consistent with a random count process.There are
34 years without a hurricane and one year (1886)with seven hurricanes. The number
of years with a particular hurricane count provides a histogram. It is a good research
practice to show your data in t his way.

7.1.1 Poisson Process

The shape of the histogram suggests that a Poisson distribution is a good descrip-
tion for these data. The density function of the Poisson distribution shows that the
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Figure 7.1 Annual hurricane occurrence. (a) Time series and (b) distribution.

probability p of obtaining a count xwhen the mean count (rate) is λ is given by

p(x)=
e−λλx

x!
(7.1)

where e is the exponential function and ! is the factorial symbol. The equation
indicates that probability of no events is p(0)= e−λ.
With λ =1.69 hurricanes per year, the probability of no hurricanes in a random

year is

> exp(-rate)

[1] 0.184

This implies that the probability of at least one hurricane is 0.82 or 82 percent.
Using the dpois function, you can determine the probability for any number

of hurricanes. For example, to determine the probability of observing exactly one
hurricane when the rate is 1.69 hurricanes per year, type

> dpois(x=1, lambda=rate)

[1] 0.311

Or the probability of five hurricanes expressed as a percentage is

> dpois(5, rate) * 100

[1] 2.14

Recall that you can leave off the argument names in the function if the argument val-
ues are placed in the correct order. Remember, the argument order can be found by
placing a question mark in front of the function name and leaving off the parentheses.
This brings up the function’s help page (see Chapter 2).
To answer the question,What is the probability of two or fewer hurricanes? you use

the cumulative probability function ppois as follows:

> ppois(q=2, lambda=rate)

[1] 0.759
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Then to answer the question,What is the probability of more than two hurricanes? you
add the argument lower.tail=FALSE.

> ppois(q=2, lambda=rate, lower.tail=FALSE)

[1] 0.241

7.1.2 InhomogeneousPoisson Process

The Poisson distribution has the property that the variance is equal to themean.Thus
data that can be described with a Poisson distribution has a variance to mean ratio
close to one. You compute this ratio with your data by typing

> round(var(H$All)/rate, 2)

[1] 1.24

This says that the variance of hurricane counts is 24 percent larger than the mean. Is
this unusual for a Poisson distribution?
You check by performing a Monte Carlo (MC) simulation experiment. AnMC

simulation relies on repeated random sampling from a distribution. Compare it to
a bootstrap resampling procedure, which relies on repeated random sampling from
a set of data (see Section 3.9.3). A single random sample of size n from a Poisson
distribution with a rate equal to 1.5 is obtained by typing

> rpois(n=5, lambda=1.5)

[1] 0 1 0 2 1

Here you repeat thism= 1,000 times and let n be the number of years in your hurri-
cane record and λ be the rate. For each sample, you compute the ratio of the variance
to the mean.

> set.seed(3042)

> ratio = numeric()

> m = 1000

> for (i in 1:m){

+ h = rpois(n=n, lambda=rate)

+ ratio[i] = var(h)/mean(h)

+ }

The vector ratio contains 1,000 values of the ratio. To help answer the Is this
unusual? question, you determine the proportion of ratios greater than 1.24:

> sum(ratio > var(H$All)/rate)/m

[1] 0.028

Only 2.8 percent of the ratios are larger, so the answer from your MC experiment
is “yes,” and variability in hurricane counts is higher than you would expect from a
Poisson distribution with a constant rate.
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This might indicate that the rate varies with time. Although you can compute a
long-term average, some years have a higher rate than others. The variation in the
rate is due to things such as El Niño. So you expect more variance (extra dispersion)
in counts relative to a constant rate (homogeneous Poisson) distribution. This is the
rationale behind seasonal forecasts. The variation in the annual rate is not obvious
from looking at the variation in counts. Even with a constant rate, the counts will vary.
You modify your MC simulation using the gamma distribution for the rate and

then examine the ratio of variance to the mean from a set of Poisson counts with the
variable rate. The gamma distribution describes the variability in the rate using the
shape and scale parameters. The mean of the gamma distribution is the shape times
the scale. You specify the shape to be 5.6 and the scale to be 0.3 so that the prod-
uct matches closely the long-term average count. You could choose other values that
produce the same average.
Nowyour simulation first generates 1,000 randomgamma values, and then for each

gamma, 160 years of hurricane counts are generated.

> ratio = numeric(); set.seed(3042); m = 1000

> for (i in 1:m){

+ h = rpois(n=n, lambda=rgamma(m, shape=5.6,

+ scale=.3))

+ ratio[i] = var(h)/mean(h)

+ }

> sum(ratio > var(H$All)/rate)/m

[1] 0.616

In this case, we find that 61.6 percent of the ratios are larger, so we conclude that the
observed hurricane counts aremore consistent with a variable-rate (inhomogeneous)
Poisson model.
These examples demonstrate an important use of statistics: to simulate data that

have the same characteristics as your observations. Figure 7.2 shows a plot of the
observed hurricane record over the 160-year period together with plots from three
simulated records of the same length and having the same overdispersed Poisson vari-
ation as the observed record. As shown earlier, such simulated records provide a way
to test hypotheses about natural variability in hurricane climate. Summary charac-
teristics of a 100 years of hurricanes at a coastal location may be of little value, but
running a sediment transport model at that location with a much larger number of
simulated hurricane counts will provide an assessment of the uncertainty in sediment
movement resulting from variation in hurricane frequency.

7.2 ENVIRONMENTAL VARIABLES

The parameter of interest is the annual hurricane rate. Given the rate, you have a
probability distribution for any possible hurricane count. You noted that the observed
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Figure 7.2 Hurricane occurrence using (a) observed and (b–d) simulated counts.

counts are consistent with a Poisson distribution having a variable rate. But where
does this variability come from?
On the annual time scale to a first-order high ocean, heat content and cold upper

air temperature provide the fuel for a hurricane, a calm atmosphere allows a hurri-
cane to intensify, and the position and strength of the subtropical high pressure steers
a hurricane that does form. Thus, hurricane activity responds to changes in climate
conditions including sea-surface temperature (SST) as an indicator of oceanic heat
content, sunspot number as an indicator of upper air temperature, El Niño-Southern
Oscillation (ENSO) as indicator of wind shear, and the North Atlantic Oscillation as
an indicator of steering flow.
SST provides an indication of the thermodynamic environment, as do sunspots.

An increase in solar UV radiation during periods of strong solar activity will have a
suppressing effect on tropical cyclone intensity as the air above the hurricane will
warm through absorption of radiation by ozone. ENSO is characterized by basin-
scale fluctuations in sea-level pressure (SLP) across the equatorial Pacific Ocean.
The Southern Oscillation Index (SOI) is defined as the normalized SLP differ-
ence between Tahiti and Darwin. The SOI is strongly anticorrelated with equatorial
Pacific SSTs so that an El Niño warming event is associated with negative SOI
values.
TheNAOis characterizedby fluctuations in SLPdifferences.Monthly values are an

indicator of the strength and/or position of the subtropical Bermuda High. The rela-
tionship might result from a teleconnection between the mid-latitudes and tropics
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whereby a below-normal NAO during the spring leads to dry conditions over the
continents and to a tendency for greater summer–fall middle tropospheric ridging
(enhancing the dry conditions). Ridging over the eastern and western sides of the
North Atlantic basin tends to keep the middle tropospheric trough, responsible for
hurricane recurvature, farther to the north during the peak of the season (Elsner and
Jagger, 2006). The data sets containing the environmental variables are described in
Chapter 6, where you also plotted them (see Figure 6.6). With the exception of the
NAO index, the monthly values are averages over the 3 months of August through
October. The NAO index is averaged over the 2 months of May and June.

7.3 BIVARIATE RELATIONSHIPS

Consider the relationship between hurricane frequency and one of the environmen-
tal variables (covariate). Scatter plots are not very useful as there are many covariate
values for a given count. It is better to plot a summary of the covariate distribution for
each count.
The five-number summary provides information about the median, the range, and

the quartile values of a distribution (see Chapter 5). So, for example, you compare the
five-number summary of the NAO during years with no hurricanes and during years
with three hurricanes by typing

> load("annual.RData")

> nao0 = annual$nao[H$All == 0]

> nao3 = annual$nao[H$All == 3]

> fivenum(nao0); fivenum(nao3)

[1] -2.030 -0.765 -0.165 0.600 1.725

[1] -2.655 -1.315 -0.685 -0.085 1.210

For each quantile of the five-number summary, the NAO value is lower when there
are three hurricanes compared to when there are no hurricanes. A plot showing the
five-number summary values for all years and all covariates is shown in Figure 7.3.
Note that the covariate is by convention plotted on the horizontal axis in a scatter
plot, so youmake the lines horizontal.
The plots show that the SOI and NAO are likely important in statistically explain-

ing hurricane counts as there appears to be a systematic variation in counts across
the range of values. The variation is less clear with SST and sunspot number. The
bivariate relationships do not necessarily tell the entire story. A covariate might be
important in explaining the residual variability so all the variablesmight be significant
in a multivariate model (see Chapter 3).

7.4 POISSON REGRESSION

Themodel of choice for count data is Poisson regression. Poisson regression assumes
that the response variable has a Poisson distribution, and the logarithm of the
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Figure 7.3 Bivariate relationships between covariates and hurricane counts.

expected value of the response variable is modeled with a linear combination of
explanatory variables. It is an example of a log-linear model.

7.4.1 Limitation of Linear Regression

The linear regression model described in Chapter 3 is not appropriate for count data.
To illustrate, here you regress U.S. hurricane counts on the four explanatory variables
(covariates) described earlier. You then use the model to make predictions specifying
the SOI and NAO at three standard deviation departures from the average, a large
sunspot number, and an average SST value.
Tomake things a bit simpler, you first create a data frame by typing

> df = data.frame(All=H$All, SOI=annual$soi,

+ NAO=annual$nao, SST=annual$sst, SSN=annual$ssn)

> df = df[-(1:15), ]

Here the data frame object df has columns with labelsAll, SOI, NAO, SST, and SSN
corresponding to the response variableU.S. hurricane counts and the four explanatory
variables. You remove the first 15 years because of missing SOI values.
You then create a linear regression model object using the lm function specifying

the response and covariates accordingly.

> lrm = lm(All ˜ SOI + NAO + SST + SSN, data=df)

Your model is saved in lrm.
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Next you use the predict method on the model object together with specific
explanatory values specified using the newdata argument. The names must match
those used in your model object, and each explanatory variablemust have a value.

> predict(lrm, newdata=data.frame(SOI=-3, NAO=3,

+ SST=0, SSN=250))

1

-0.318

The prediction results in a negative number that is not a count. It indicates that the
climate conditions are unfavorable for hurricanes, but the number has no physical
meaning.

7.4.2 Poisson Regression Equation

A Poisson regression model that specifies the logarithm of the annual hurricane rate
is an alternative to linear regression. The assumption is that the hurricanes are inde-
pendent in the sense that the arrival of one hurricane will not make another onemore
or less likely, but the rate of hurricanes varies from year to year due to the covariates.
The Poisson regression model is expressed as

log(λ)= β0+β1x1 + . . .+βpxp (7.2)

Here there are p covariates (indicated by the xi’s) and p+ 1 parameters (βi’s). The
model uses the logarithm of the rate as the response variable, but it is linear in the
regression structure. It is not the same as a linear regression on the logarithm of
counts. The model coefficients are determined by themethod of maximum likelihood.
It is important to understand that with a Poisson regression you cannot explain all

the variation in the observed counts; there will always be unexplainable variation due
to the stochastic nature of the process. Thus even if the model precisely predicts the
rate of hurricanes, the set of predicted counts will have a degree of variability that
cannot be reduced by the model (aleatory uncertainty). Consequently, if you think
that most of the variability in the counts can be explained, then Poisson regression is
not the appropriatemodel.

7.4.3 Method ofMaximumLikelihood

Given the set of parameters as a vector β and a vector of explanatory variables x, the
mean of the predicted Poisson distribution is given by

E(Y |x)= eβ
′x (7.3)

and thus, the Poisson distribution’s probability density function is given by

p(y|x;β)= ey(β
′x)e−eβ

′x

y!
(7.4)
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Suppose that you are given a data set consisting of n vectors xi ∈R
n+1, i= 1, . . . ,n,

along with a set of n values y1, . . . ,yn ∈ R. Then, for a given set of parameters β , the
probability of attaining this particular set of data is given by

p(y1, . . . ,yn |x1, . . . ,xn;β)=
n

∏
i=1

eyi(β
′xi)e−eβ

′xi

yi!
. (7.5)

By themethod ofmaximum likelihood, youwish to find the set of parametersβ that
makes this probability as large as possible. To do this, the equation is first rewritten as
a likelihood function in terms of β .

L(β|X,Y)=
n

∏
i=1

eyi(β
′xi)e−eβ

′xi

yi!
. (7.6)

Note that the expression on the right-hand side of the equation has not changed.
By taking logarithms, the equation is easier to work with. The log-likelihood equation
is given by

�(β|X,Y)= logL(β|X,Y)=
n

∑
i=1

(
yi(β ′xi)− eβ

′xi − log(yi!)
)
. (7.7)

Notice that the β ’s only appear in the first two terms of the summation. Therefore,
given that you are interested only in finding the best value for β , you can drop the yi!
and write

�(β|X,Y)=
n

∑
i=1

(
yi(β ′xi)− eβ

′xi
)
. (7.8)

This equation has no closed-form solution. However, the negative log-likelihood,
−�(β|X,Y), is a convex function, and so standard optimization or gradient ascent
techniques can be applied to find the optimal value of β , for which the probability is
maximum.

7.4.4 Model Fit

The method of maximum likelihood is employed in the glm function to determine
the model coefficients. The Poisson regression model is a type of generalized linear
model (GLM) in which the logarithm of the annual rate is a linear function of the
covariates (predictors).
To fit a Poisson regression model to U.S. hurricanes and save the model as an

object, type

> prm = glm(All ˜ SOI + NAO + SST + SSN, data=df,

+ family="poisson")

The model formula is identical to what you used to fit the earlier linear regression
model. The formula is read as “U.S. hurricane counts are modeled as a function of
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Table 7.1 Coefficients of the Poisson regressionmodel.

Estimate Std. error z value Pr(> |z|)
(Intercept) 0.5953 0.1033 5.76 0.0000
SOI 0.0619 0.0213 2.90 0.0037
NAO −0.1666 0.0644 −2.59 0.0097
SST 0.2290 0.2553 0.90 0.3698
SSN −0.0023 0.0014 −1.68 0.0928

SOI, NAO, SST, and SSN.” Differences from the linear model fitting include the use
of the glm function and the argument specifying family="poisson".
You examine the model coefficients by typing

> summary(prm)

The model coefficients and the associated statistics are shown in Table 7.1.
As anticipated from the bivariate relationships, the SOI and SST variables are

positively related to the rate of U.S. hurricanes, and the NAO and sunspot number
are negatively related. You can see that the coefficient on SST is positive but not
statistically significant. Both the SOI andNAOhave coefficients that provide convinc-
ing evidence against the null hypothesis, while the coefficient on the SSN provides
suggestive but inconclusive evidence against the null.
Statistical significance is based on a null hypothesis that the coefficient is zero

(Chapter 3). The ratio of the estimated coefficient to its standard error (z-value) has
an approximate standard normal distribution assuming the null is true. The probabil-
ity of finding a z-value this extreme or more is your p-value. The smaller the p-value,
the less support there is for the null hypothesis given your data and model.
You use the plotmo function from the plotmo package (Milborrow, 2011b)

to plot your model’s response when varying one covariate while holding the other
covariates constant at their median values.

> require(plotmo)

> plotmo(prm)

The results are shown in Figure 7.4. As SOI and SST increase so does the hurricane
rate. By contrast the rate decreases with increasing NAO and SSN. The curvature
arises from the fact that the covariates are related to the counts through the logarithm
of the rate. The confidence bands are based on pointwise ±2 standard errors. Note
that the relatively large width for SOI values above 5 s.d. and for NAO values below
−2 s.d.

7.4.5 Interpretation

Interpretation of the Poisson regression coefficients is different than the interpreta-
tion of the linear regression coefficients explained in Chapter 3. For example, the
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Figure 7.4 Dependence of hurricane rate on covariates in a Poisson regression.

coefficient value on the SOI indicates that for every one standard deviation (s.d.)
increase in the SOI, the difference in the logarithmof hurricane rates is 0.062. Because
there are other covariates, you must add “given that the other covariates in the model
are held constant.”
But what does the difference in the logarithmmean? Note that

logA− logB= log(
A
B
) (7.9)

so exponentiating the SOI coefficient value provides a ratio of the hurricane rates for
a unit change in the SOI. You do this by typing

> exp(summary(prm)$coefficients[2, 1])

[1] 1.06

and find that for every one s.d. increase in SOI, the hurricane rate increases by a factor
of 1.06 or 6 percent. Similarly, since the NAO coefficient value is −0.167, you find
that for every one s.d. increase in the NAO, the hurricane rate decreases by a factor of
15 percent.

7.5 MODEL PREDICTIONS

Given the model coefficients obtained by the glm function and saved as a model
object, you make predictions using the predictmethod. For comparison, you pre-
dict the rate of hurricanes given the same coefficient values used earlier for the linear
regression model.
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> predict(prm, newdata=data.frame(SOI=-3, NAO=3,

+ SST=0, SSN=250), type="response")

1

0.513

The argument type="response" gives the prediction in terms of the mean
response (hurricane rate). By default, type="link", which results in a prediction
in terms of the link function (here the logarithm of the mean response). Recall that
the linear regression model gave a prediction that was physically unrealistic. Here,
the predicted value indicates a small hurricane rate as you would expect given the
covariate values, but the rate is a realistic nonnegative number.
The predicted rate together with Eq. 7.1 provides a probability for each possi-

ble count. To see this you create two bar plots, one for a forecast of hurricanes
under unfavorable conditions and another for a forecast of hurricanes under favorable
conditions. First you save the predicted rate for the specified values of the covari-
ates. You then create a vector of counts from zero to six that is used as the set of
quantiles for the dpois function and as the names argument in the barplot func-
tion. The plotting parameters are set using the par function. To make it easier
to compare the probability distributions, limits on the vertical axis (ylim) are set
the same.

> fav = predict(prm, newdata=data.frame(SOI=2, NAO=-2,

+ SST=0, SSN=50), type="response")

> ufa = predict(prm, newdata=data.frame(SOI=-2, NAO=2,

+ SST=0, SSN=200), type="response")

> h = 0:6

> par(mfrow=c(1, 2), las=1)

> barplot(dpois(x=h, lambda=ufa), ylim=c(0, .5),

+ names.arg=h, xlab="Number of Hurricanes",

+ ylab="Probability")

> mtext("a", side=3, line=1, adj=0, cex=1.1)

> barplot(dpois(x=h,lambda=fav), ylim=c(0,.5),

+ names.arg=h, xlab="Number of Hurricanes",

+ ylab="Probability")

> mtext("b", side=3, line=1, adj=0, cex=1.1)

The result is shown in Figure 7.5. The forecast probability of two or more hurri-
canes is 72 percent in years with favorable conditions but decreases to 16 percent in
years with unfavorable conditions. The probability of no hurricanes during years with
favorable conditions is 8 percent, which compares with a probability of 48 percent
during years with unfavorable conditions. The model translates climate swings to
changes in landfall probabilities.
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Figure 7.5 Forecast probabilities for (a) unfavorable and (b) favorable conditions.

7.6 FORECAST SKILL

7.6.1 Metrics

Forecast skill refers to how well predictions match observations. There are several
ways to quantify this match. Here you consider three of the most common: the
mean absolute error (MAE), the mean squared error (MSE), and the correlation
coefficient (r).
Let λi be the predicted rate for year i and oi be the corresponding observed count

for that year. Then the three measures of skill over n years are defined by

MAE=
1
n

n

∑
i=1

|λi − oi| (7.10)

MSE=
1
n

n

∑
i=1

(λi − oi)2 (7.11)

r=
∑(λi − λ̄)(oi − ō)√

∑(λi − λ̄)2 ∑(oi − ō)2
(7.12)

You obtain the predicted rate for each year in the record (λi) by typing

> prm = glm(All ˜ SOI + NAO + SSN, data=df,

+ family="poisson")

> pr = predict(prm, type="response")

You first create a new model removing the insignificant SST covariate. Since each
prediction is made for a year with a known hurricane count, it is referred to as a
“hindcast.” The word “forecast” is reserved for a prediction made for a year where
the hurricane count is unknown (typically in the future).
The Poisson regression hindcasts are given in terms of rates while the observations

are counts. So instead of using a rate you use the probability distribution of observing



Elsner: “07˙ELSNER˙CH07” — 2012/9/24 — 18:11 — page 175 — #17

175 Forecast Skill

Table 7.2 Forecast skill (in sample). ‘Useful’ is the percentage skill
above climatology.

Poisson Climatology Useful

MAE 1.08 1.16 7.04
MSE 1.93 2.18 11.24
r 0.34
MAEp 1.44 1.50 4.08
MSEp 3.67 3.92 6.26

j= 0,1, . . . ,∞ hurricanes. A probabilistic form of the earlier formulae are

MAEp=
1
n

n

∑
i=1

∞
∑
j=0

dpois(j,λi) · ∣∣j− oi
∣∣ (7.13)

MSEp=
1
n

n

∑
i=1

∞
∑
j=0

dpois(j,λi) · (j− oi)2 (7.14)

=MSE+ λ̄ (7.15)

where dpois(j,hi) is the probability of j hurricanes in the ith year given the predicted
rate λi, and oi is the observed count. There is no probabilistic form to the correlation
as a measure of forecast skill.
A prediction model is deemed useful if the skill level exceeds the level of a naive

reference model. The percentage above greater than the skill obtained from a naive
model is referred to useful skill. The naive model is typically climatology. To obtain
the climatological rate, you type

> clim = glm(All ˜ 1, data=df, family="poisson")

> cr = predict(clim, type="response")

Note that the only difference from your earlier is that the term to the right of the tilde
is a 1. The model predicts the mean hurricane rate over the period of record. The
value is the same for each year.
Table 7.2 shows skill metrics for your U.S. hurricane model and the percentage of

useful skill relative to climatology. Correlation is undefined for a forecast of clima-
tology. The useful skill level is between 4.1 and 11.2 percent. Although not high, it
represents a significant improvement.

7.6.2 Cross-Validation

The earlier procedure results in an in-sample assessment of forecast skill. All years
of data are used to estimate a single set of model coefficients with the model
subsequently used to hindcast each year’s hurricane activity. But how well will
your model perform when making predictions of the future? This question is best
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answered with an out-of-sample assessment of skill. An out-of-sample assessment
(1) excludes a single year of observations, (2) determines the MLE coefficients
of the Poisson regression model using observations from the remaining years, and
(3) uses the model to predict the hurricane count for the year left out. This is
done n times, removing each year’s data successively. The above skill metrics are
then used on these out-of-sample predictions. The procedure is called “crossvalida-
tion,” and where single cases are left out, it is called leave-one-out cross validation
(LOOCV).
To perform LOOCV on your Poisson regression model, you loop over all years

using the index i. Within the loop, you determine the model using all years except
i (df[-i, ] in the data argument). You then make a prediction only for the
year you left out (newdata=df[i, ]). Note that your climatology model is cross
validated as well.

> j = 0:15; n = length(df$All)

> prx = numeric()

> crx = numeric()

> for(i in 1:n){

+ prm = glm(All ˜ SOI + NAO + SSN,

+ data=df[-i, ], family="poisson")

+ clm = glm(All ˜ 1, data=df[-i, ], family="poisson")

+ prx[i] = predict(prm, newdata=df[i, ], type="r")

+ crx[i] = predict(clm, newdata=df[i, ], type="r")

+ }

Skill assessment is done in the same way as for in-sample assessment. The results
of the cross-validation assessment of model skill are give in Table 7.3. Out-of-sample
skill levels are lower. This is an estimate of the average skill the model will have when
making actual forecasts. You should show out-of-sample skill if you intend to use your
model to predict the future.
The difference in percentage of usefulness between in-sample and out-of-sample

skill is a measure of the overfit in your model. Overfit arises when your model

Table 7.3 Forecast skill (out of sample). ‘Useful’ in the percentage
skill above climatology.

Poisson Climatology Useful

MAE 1.11 1.16 4.91
MSE 2.05 2.21 7.03
r 0.26
MAEp 1.46 1.51 2.81
MSEp 3.80 3.95 3.78
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interprets random fluctuations as signal. Cross-validation helps you protect yourself
against being fooled by this type of randomness.

7.7 NONLINEAR REGRESSION STRUCTURE

Poisson regression specifies a linear relationship between your covariates and the
logarithm of the hurricane rate. This linearity can be restrictive if the influence of a
covariate changes over the range of covariate valves. Multivariate adaptive regression
splines (MARS) is a form of regression introduced by Friedman (1991) that allows
for nonlinearity in the covariates.
MARS builds models of the form

f̂ (x)=
k

∑
i=1

ciBi(x) (7.16)

whereBi(x) is a basis function and ci is a constant for a given basis. Themodel is thus a
weighted sumof the k basis functions. A basis function takes one of three forms: either
a constant representing the intercept term, a hinge function of the formmax(0,x−a),
where a is a constant representing the knot for the hinge function, or a product of two
or more hinge functions to allow the basis function the ability to handle interaction
between two or more covariates. A hinge function is zero for part of its range, so it
partitions your multivariate data into disjoint regions.
The earth function in the earth package (Milborrow, 2011a) provides function-

ality forMARS. The syntax is the same as other models in R. Here you create a model
using MARS for your hurricane counts and environmental covariates by typing

> require(earth)

> mars = earth(All ˜ SOI + NAO + SST + SSN, data=df,

+ glm=list(family="poisson"))

A summary method on the model object indicates that only the SOI and NAO are
selected as important in explaining hurricane rates. The correlation between the pre-
dicted rate and the observed counts is obtained by taking the square root of the
R-squared value.

> sqrt(mars$rsq)

[1] 0.469

This value exceeds the correlation from your Poisson regression by 39.7 percent,
suggesting that MARSmight be a better prediction model.
The partial dependence plot (Fig. 7.6) shows the hinge functions for the two

selected covariates. The knots on the SOI are located at about−2 and+4 s.d. There
is no relationship between the SOI, and hurricane counts for the lowest values of SOI,
and there is a sharp inverse relationship for the largest values. Caution is advised
against overinterpretation as the graph describes only the SOI–hurricane relation-
ship for median NAO values. The single knot on the NAO indicates no relationship
between the NAO and hurricane counts for values less than about −0.5 s.d. Again,
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Figure 7.6 Dependence of hurricane rate on covariates in a MARS model.

this applies only at median SOI values. There are no standard errors from which to
obtain confidence bands.
Before making forecasts, you use cross-validation on your MARS to get a cor-

relation between observed and predicted using independent data. You do this by
specifying the number of cross-validations with the nfold argument1. The function
earth builds nfold cross-validated models. For each fold, it builds a model with
in-sample data and then uses the model to compute the R-squared value from predic-
tions made on the out-of-sample data. For instance, with nfold=2, the number of
years in the in-sample and out-of-sample is roughly the same. The choice of years is
chosen randomly, so you set a seed to allow replication of your results.
Here you set nfold at 5 as a compromise between having enough data to build the

model and make predictions with it. You stabilize the variance further by specifying
ncross to allow 40 different nfold cross-validations.

> set.seed(3042)

> marsCV = earth(All ˜ SOI + NAO, data=df, nfold=5,

+ ncross=40, glm=list(family="poisson"))

The R-squared results are saved in your marsCV object in column cv.rsq.tab.
The last row gives the mean R-squared value that provides an estimate of the average
skill your model will have when it is used to make actual forecasts. The square root of
that value is the correlation, obtained by typing

> rn = dim(marsCV$cv.rsq.tab)[1]

> mars.r = sqrt(marsCV$cv.rsq.tab[rn, ][1])

> mars.r

All

0.291

The mean r value is 11 percent higher than the r value from the HOOCV of your
Poisson regressionmodel (see Table 7.3). This is still an improvement but below that
estimated from your in-sample skill.

1 Crossvalidation is done if the argument is greater than one
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7.8 ZERO-INFLATED COUNT MODEL

The Poisson regression model is a good place to start when working with count
data, but it might not be good enough when the counts are overdispersed or when
there are a large number of zero. Consider the question of whether your Poisson
regression of hurricane counts is adequate. You examine model adequacy using the
residual deviance. The residual deviance is −2 times the log-likelihood ratio of a
model without covariates compared to your model with covariates.
The residual deviance along with the residual degrees of freedom is available from

the summary method on your glm object.

> prm = glm(All ˜ SOI + NAO + SSN, data=df,

+ family="poisson")

> s = summary(prm)

> rd = s$deviance

> dof = s$df.residual

Under the null hypothesis that yourmodel is adequate, the residual deviance has a χ2

distribution with degrees of freedom equal to the residual degrees of freedom. Here
the situation is reversed from the normal situation in which the null hypothesis is the
opposite of what you hope for. To obtain the p-value for a test of model adequacy,
type

> pchisq(rd, dof, lower.tail=FALSE)

[1] 0.0255

The residual deviance is 175.61 on 141 degrees of freedom resulting in a p-value of
0.0255. Thus there is evidence that something is missing.
The problemmay be that hurricanes tend to arrive in clusters even after taking into

account the covariates that influence hurricane rates from year to year. This cluster-
ing produces overdispersion in observed counts. You will examine this possibility and
what to do about it in Chapter 11.
Another problem could be that the count data have too many zeros. This is typical

when there are two processes at work: one determining whether there is at least one
event and the other determining how many events. An example is the occurrence of
cloud-to-ground lightning strikes. There will bemanymore hours with no strikes due
to convective processes that are different than processes that produce one or more
strikes. These kinds of data can be handled with zero-inflatedmodels.
Zero-inflated countmodels aremixturemodels combining a pointmass at zero and

a count distribution. This leaves you with two sources of zeros: one from the point
mass distribution and the other from the count distribution. Usually the count model
is a Poisson regression and the print mass is a binomial regression.
The zeroinfl function in the pscl package (Zeileis et al., 2008) can be used

to fit a zero-inflated model using the method of maximum likelihood. The formula
describes the count data model, i.e., y ˜ x1 + x2 specifying a count data regres-
sion, where all zero counts have the same probability of belonging to the zero-inflation
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component. This is equivalent to the model y ˜ x1 + x2 | 1, making it explicit
that the zero-inflatedmodel has only an intercept.Additional predictors can be added
so that not all zeros have the same probability of belonging to the point mass compo-
nent or to the count component. A typical formula is y ˜ x1 + x2 | z1 + z2.
The covariates in the zero and the count component can be overlapping
(or identical).
For example, to model your U.S. hurricane counts where the count model uses all

four covariates and where the binomial model uses only the SST variable, type

> require(pscl)

> zim = zeroinfl(All ˜ SOI + NAO + SST + SSN | SST,

+ data=df)

The model syntax includes a vertical bar to separate the covariates between the two
model components. The returned object is of class zeroinfl and is similar to the
object of class glm. The object contains a list of the coefficients and terms for each
model component. To summarize the model object, type

> summary(zim)

Call:

zeroinfl(formula = All ˜ SOI + NAO + SST + SSN |

SST, data = df)

Pearson residuals:

Min 1Q Median 3Q Max

-1.492 -0.774 -0.127 0.583 3.061

Count model coefficients (poisson with log link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.64087 0.10593 6.05 1.5e-09

SOI 0.06920 0.02236 3.09 0.0020

NAO -0.16928 0.06554 -2.58 0.0098

SST 0.57178 0.28547 2.00 0.0452

SSN -0.00239 0.00143 -1.67 0.0942

Zero-inflation model coefficients (binomial with

logit link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.44 2.03 -2.19 0.029

SST 6.80 3.89 1.75 0.080

Number of iterations in BFGS optimization: 16

Log-likelihood: -231 on 7 Df

Results show that the four covariates have a statistically significant influence on the
number of U.S. hurricanes and that SST has a significant relationship with whether or
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not there will be at least one hurricane. But note that the sign on the SST coefficient
is positive in the zero-inflation component indicating that higher SST is associated
with more years without hurricanes. The sign is also positive in the count component
indicating that, given at least one hurricane, higher SST is associated with a higher
probability of two or more hurricanes.
A cross-validation exercise indicates that this the zero-inflated model performs

slightly worse than the Poissonmodel. The useful skill asmeasured by themean abso-
lute error is 3.7 percent above climatology for your zero-inflated model compared
with 4.9 percent above climatology for your Poisson model.

7.9 MACHINE LEARNING

You can remove the Poisson assumption all together by employing a machine-
learning algorithm that searches your data to find patterns related to the annual counts
(data mining). A regression tree is a type of machine learning algorithm that outputs
a series of decisions with each decision leading to a value of the response or to another
decision. If the value of the NAO is less than−1 s.d., for example, then the response is
two hurricanes. If it is greater, then is the SOI greater than 0.5 s.d. and so on. A single
tree will capture the relationships between annual counts and your predictors.
To see how this works, import the annual hurricane data and subset on years since

1950. Create a data frame containing only the basin-wide hurricane counts and SOI
and SST as the two predictors.

> load("annual.RData")

> dat = subset(annual, Year >= 1950)

> df = data.frame(H=dat$B.1, SOI=dat$soi, SST=dat$sst)

Then using the tree function from the tree package (Ripley, 2011), type

> require(tree)

> rt = tree(H ˜ SOI + SST, data=df)

The model syntax is the same, with the response variable to the left of the tilde and
the covariates to the right. To plot the regression tree, type

> plot(rt); text(rt)

Instead of interpreting the parameter values from a table of coefficients, you inter-
pret a regression tree from an upside-down treelike diagram. You start at the top. The
first branch is a split on your SST variable at a value of 0.33. The split is a rule. Is the
value of SST less than 0.33◦C? If yes, branch to the left; if no, branch to the right. All
splits work this way. Following on the right, the next split is on SOI. If SOI is greater
than 0.12 s.d., then the mean value of all years under these conditions is 10.8 hur/yr.
This is the end of the branch (leaf). You check this by typing

> mean(df$H[df$SST >= .33 & df$SOI > .12])

[1] 10.8
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The model is fit using binary recursive partitioning. Splits are made along coor-
dinate axes of SST and SOI so that on any branch, a split is chosen that maximally
distinguishes the hurricane counts. Splitting continues until the variables cannot be
split or there are too few years (less than 6 by default). Here, SST is the variable
explaining the most variation in the counts so it gets selected first. Again, the value
at which the split occurs is based on maximizing the difference in counts between the
two subsets. The tree has five branches.
In general the key questions are as follows: which variables are best to use and

which value gives the best split? The choice of variables is similar to the forward
selection procedure of stepwise regression (Chapter 3). A prediction is made by
determining which leaf is reached based on the values of your predictors. To deter-
mine the mean number of hurricanes when SOI is−2 s.d. and SST is 0.2◦C, you use
the predictmethod and type

> predict(rt, data.frame(SOI=-2, SST=.2))

1

7.35

The predicted value depends on the tree and the tree depends on what years are
used to grow it. For example, regrow the tree by leaving the last year out and make a
prediction using the same two predictor values.

> rt2 = tree(H ˜ SOI + SST, data=df[-61, ])

> predict(rt2, data.frame(SOI=-2, SST=.2))

1

5.71

Results are different. Which prediction do you choose? Forecast sensitivity occurs
with all statistical models, but it is more acute in models that contain a large num-
ber of parameters. Each branch in a regression tree is a parameter, so with your two
predictors the model has five parameters.
A random forest algorithm sidesteps the question of prediction choice by making

predictions from many trees (Breiman, 2001). It creates a sample from the set of all
years and grows a tree using data only from the sampled years. It then repeats the sam-
pling and grows another tree. Each tree gives a prediction and the mean is taken. The
function randomForest in the randomForest package provides a random forest
algorithm. For example, type

> require(randomForest)

> rf = randomForest(H ˜ SOI + SST, data=df)

By default, the algorithm grows 500 trees. Tomake a prediction type,

> predict(rf, data.frame(SOI=-2, SST=.2))

1

4.91
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Regression trees and random forest algorithms tend to overfit your data, especially
when you are searching over a large set of potential predictors in noisy climate data.
Overfitting results in small in-sample error, but large out-of-sample error. Again, a
cross-validation exercise is needed if you want to claim the algorithm has superior
predictive skill. Cross-validation removes the noise specific to each year’s set of obser-
vations and estimates how well the random forest algorithm finds prediction rules
when this coincident information is unavailable. For example, Does the random for-
est algorithm provide better prediction skill than a Poisson regression? To answer this
question, you arrange a HOOCV as follows:

> n = length(df$H)

> rfx = numeric(n)

> prx = numeric(n)

> for(i in 1:n){

+ rfm = randomForest(H ˜ SOI + SST, data=df[-i, ])

+ prm = glm(H ˜ SOI + SST, data=df[-i, ],

+ family="poisson")

+ new = df[i, ]

+ rfx[i] = predict(rfm, newdata=new)

+ prx[i] = predict(prm, newdata=new,

+ type="response")

+ }

The out-of-sample mean-squared prediction error is computed by typing

> mean((df$H - prx)ˆ2); mean((df$H - rfx)ˆ2)

[1] 5.07

[1] 5.36

Results indicate that the Poisson regression performs slightly better than the random
forest algorithm in this case although the difference is not statistically significant. The
correlation between the actual and predicted value is 0.539 for the Poissonmodel and
0.502 for the random forest algorithm.
Figure 7.7 shows the bivariate influence of SST and SOI on hurricane counts using

the random forest algorithm and Poisson regression. Hurricane counts increase with
SST and SOI, but for high values of SOI, the influence of SST is stronger. Similarly for
high values of SST, the influence of the SOI is more pronounced. The random forest
is able to capture nonlinearities and thresholds but at the expense of interpreting some
noise as signal, as seen by the relatively high count with SOI values near−3 s.d. and
SST values near−0.1◦C.

7.10 LOGISTIC REGRESSION

Some of our research in the 1990s focused on the climatology of hurricanes from
nontropical origins (Elsner et al., 1996; Kimberlain and Elsner., 1998). We analyzed
available information from each North Atlantic hurricane since 1944 to determine
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Figure 7.7 Hurricane response. (a) Random forest and (b) Poisson regression.

whether we could discern middle-latitude influences on development. We classified
hurricanes into tropical and baroclinic based on primary origin and development
mechanisms. Here you would like to have a model that predicts a hurricane’s group
membership based simply on where the hurricane originated.
Logistic regression is the model of choice when your response variable is dichoto-

mous. Many phenomena can be studied in this way. An event either occurs or it does
not. The focus is to predict the occurrence of the event. A hurricane forecaster is keen
about whether an area of disturbance will develop into a cyclone, given the present
atmospheric conditions.
Logistic regression is a generalization of the linear regression model, where the

response variable does not have a normal distribution and the regression struc-
ture is linear in the covariates. Like Poisson regression, the model coefficients are
determined using the method of maximum likelihood.
The mean of a binary variable is a percentage. For example, generate 10 random

binary values and compute the mean by typing

> set.seed(123)

> x = rbinom(n=10, size=1, prob=.5)

> x

[1] 0 1 0 1 1 0 1 1 1 0

> mean(x)

[1] 0.6

Think of the 1s as heads and 0s as tails from10 flips of a fair coin (prob=.5). You find
6 heads in 10 flips. The mean number is the percentage of heads in the sample. The
percentage of a particular outcome can be interpreted as a probability so it is denoted
as π . The logistic regression model specifies how π is related to a set of explanatory
variables.
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7.10.1 Exploratory Analysis

You input the hurricane data by typing

> bh = read.csv("bi.csv", header=TRUE)

> table(bh$Type)

0 1 3

187 77 73

The type as determined in Elsner et al., (1996) is given by the variable Type with 0
indicating tropical-only, 1 indicating baroclinic influences, and 3 indicating baroclinic
initiation. The typing was done subjectively using all the available synoptic informa-
tion about each hurricane. While the majority of hurricanes form over warm ocean
waters of the deep tropics (‘tropical-only’) some are aided in their formation by inter-
actions with midlatitude jet stream winds (‘baroclinically induced’). The stronger,
tropical-only hurricanes develop farther south and primarily occur in August and
September. The weaker, baroclinically induced hurricanes occur throughout a the
season.
First combine the baroclinic types into a single group and add this column to the

data frame.

> bh$tb = as.integer(bh$Type != 0)

> table(bh$tb)

0 1

187 150

With this grouping, there are 187 tropical and 150 baroclinic hurricanes in the record.
Thus you can state that a hurricane drawn at random from this set of cyclones has
about a 55 percent chance of being tropical-only.
Your interest is to improve on this climatologicalmodel by adding a covariate. Here

you consider the latitude at which the cyclone first reaches hurricane strength. As an
exploratory step, you create box plots of the latitudes grouped by hurricane type.

> boxplot(bh$FirstLat ˜ bh$tb, horizontal=TRUE,

+ notch=TRUE, yaxt="n", boxwex=.4,

+ xlab="Latitude of Hurricane Formation")

> axis(2, at=c(1, 2), labels=c("Tropical",

+ "Baroclinic"))

Here you make the boxes horizontal (Fig. 7.8) because latitude is your explanatory
variable. With the argument notch switched on, notches equal true, notches are
drawn on the box sides. The vertical dash inside the box is the median latitude.
Notches extend to ±1.58× IQR/

√
n, where IQR is the interquartile range (see

Chapter 2) and n is the sample size. If the notches of two box plots do not overlap,
this provides evidence that the twomedians are statistically different (Chambers et al.,
1983).
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Figure 7.8 Genesis latitude by hurricane type.

The median formation latitude for the set of tropical hurricanes is 17.9◦N, and
for the set of baroclinic hurricanes, it is farther north at 29.1◦N. This makes physical
sense as cyclones farther south are less likely to have influence from middle-latitude
baroclinic disturbances. The relatively small overlap between the two sets of latitudes
strengthens your conviction that a latitude variable will improve amodel for hurricane
type.

7.10.2 Logit and Logistic Functions

Linear regression is not the appropriatemodel for binary data. It violates the assump-
tion of equal variance and normality of residuals resulting in invalid standard errors
and erroneous hypothesis tests. In its place, you use a generalized linear model as you
did earlier with the count data.
However, instead of using the logarithm as the link between the response and the

covariates as you did in the Poisson regression model, here you use the logit function.
The logit of a number π between 0 and 1 is

logit(π)= log

(
π

1−π

)
= log(π)− log (1−π) (7.17)

If π is a probability then π/(1− π) is the corresponding odds, and the logit of the
probability is the logarithm of the odds. Odds are expressed as for:against (read: for
to against) something happening. So the odds of a hurricane strike that is posted at
1:4 means there is a 20 percent change that a strike will occur.
The logistic regression model is expressed statistically as

logit(π)= β0+β1x1+ . . .+βpxp (7.18)

whereπ is the mean. There are p covariates (xi’s) and p+ 1 parameters (βi’s).
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To convert logit(π) to π (probability of occurrence), you use the logistic function
(inverse of the logit function) given as

logistic(α)=
1

1+ exp(−α)
=

exp(α)
1+ exp(α)

(7.19)

7.10.3 Fit and Interpretation

Tofit a logistic regressionmodel to hurricane typewith latitude as the covariate saving
the model as an object, type

> lorm = glm(tb ˜ FirstLat, data=bh,

+ family="binomial")

The call function is similar to Poisson regression, but here the family is binomial
instead of poisson. The formula is read as “hurricane type is modeled as a function
of formation latitude.”
The model coefficients are determined by the method of maximum likelihood in

the glm function. To produce a table of the coefficients, you type

> summary(lorm)$coefficients

Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.083 0.9615 -9.45 3.50e-21

FirstLat 0.373 0.0395 9.45 3.49e-21

The estimated coefficients are listed by row. The coefficient for the intercept is the
log odds of a baroclinic hurricane at the equator. In other words, the odds of being
baroclinicwhen the latitude is zero is exp(−9.0826)= 0.000114.These odds are very
low, but that makes sense since no hurricanes form at the equator.
Interest is on the coefficient of the formation latitude variable indicated by the

row labeled FirstLat. The value is 0.373. Before fitting the model, you anticipate
the formation latitude coefficient to have a positive sign. Why? Because baroclinic
(tropical)-type hurricanes are coded as 1 (0) in your data set and the box plots show
that as formation latitude increases, the chance that a hurricane has baroclinic influ-
ences increases. Note that if your response values are character strings (e.g., “to”
and “be”) rather than coded as 0s and 1s, things will still work, but R will assign 0s
and 1s based on alphabetical order and this will affect how you make sense of the
coefficient’s sign.
The magnitude of the coefficient is interpreted as for every degree increase in

formation latitude, the log odds increases by a constant 0.373 units, on average.
This is not very informative. By taking the exponent of the coefficient value, the
interpretation is in terms of an odds ratio.

> exp(summary(lorm)$coefficients[2])

[1] 1.45

Thus, for every degree increase in formation latitude the odds ratio increases on aver-
age by a constant factor of 1.45 (or 45 percent). This 45 percent increase does not
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depend on the value of latitude. That is, logistic regression is linear in the odds ratio.
The interpretation is valid only over the range of latitudes in your data and physically
meaningless for latitudes outside the range where hurricanes occur.
The table of coefficients includes a standard error and p-value. Statistical signif-

icance is based on a null hypothesis that the coefficient is zero. The ratio of the
estimated coefficient to its standard error (z-value) has an approximate standard nor-
mal distribution assuming that the null is true. The probability of finding a z-value
this extreme or more is the p-value. The smaller the p-value, the less support there is
for the null hypothesis given the data and the model. The lack of support for the null
allows you accept the model.
Also a confidence interval on the estimated coefficient is obtained by typing

> confint(lorm)[2, ]

2.5 % 97.5 %

0.301 0.456

This is interpreted tomean that although your best estimate for the log odds of a baro-
clinic hurricane given latitude is 0.373, there is a 95 percent chance that the interval
between 0.301 and 0.456 will cover the true log odds.

7.10.4 Prediction

Predictions help you understand your model. As you did previously, you use the
predict method on the model object. To predict the probability that a hurricane
picked at random from your data will be baroclinic given that its formation latitude is
20◦N latitude, you type

> predict(lorm, newdata=data.frame(FirstLat=20),

+ type="response")

1

0.164

Thus, the probability of a baroclinic hurricane forming at this low latitude is 16.4 per-
cent on average.
To create a plot of predictions across a range of latitudes, first prepare a vector of

latitudes. The vector spans the latitudes in your data set. You specify an increment of
0.1◦ so the resulting prediction curve is smooth. You then use the predict method
with se.fit equal to true and save the average prediction and the predictions
corresponding to±1.96× the standard error.

> lats = seq(min(bh$FirstLat), max(bh$FirstLat), .1)

> probs = predict(lorm,

+ newdata=data.frame(FirstLat=lats),

+ type="response", se.fit=TRUE)

> pm = probs$fit
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> pu = probs$fit + probs$se.fit * 1.96

> pl = probs$fit - probs$se.fit * 1.96

Finally, you plot the data points at 0 and 1, as you did earlier, with the bar plot and
add the predicted values using the lines function.

> plot(bh$FirstLat, bh$tb, pch=19, cex=.4,

+ ylab="Probability",

+ xlab="Formation Latitude (N)")

> grid()

> lines(lats, pm, lwd=2)

> lines(lats, pu, lwd=2, col="red")

> lines(lats, pl, lwd=2, col="red")

Results are shown in Figure 7.9. Tropical-only and baroclinically enhanced hurri-
cane points are shown along the y= 0 and y= 100 lines, respectively. The gray band
is the 95 percent pointwise confidence interval. Model predictions make sense. The
probability of a baroclinically enhanced hurricane is less than 20 percent at latitudes
south of 20◦N. However, by latitude 24◦N, the probability exceeds 50 percent and by
latitude 31◦N the probability exceeds 90 percent. Note that although the odds ratio is
constant, the probability is a nonlinear function of latitude.

7.10.5 Fit and Adequacy

Output from a summary method applied to your model object (summary(lorm))
prints statistics of model fit including null and deviance residuals and the AIC (see
Chapter 3). These are shown below the table of coefficients. One measure of model
fit is the significance of the overall model.
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Figure 7.9 Logistic regression model for hurricane type.
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This test asks whether the model with latitude fits significantly better than a model
with an intercept only. An intercept-only model is called a “null” model (no covari-
ates). The test statistic is the difference between the residual deviance for the model
with and without latitude. The test statistic has aχ -squared distribution with degrees
of freedom equal to the differences in degrees of freedom between the latitude model
and the null model (i.e., the number of predictors in the model, here just one).
To find the difference in deviance between the two models (i.e., the test statistic)

along with the difference in degrees of freedom, type

> dd = lorm$null.deviance - lorm$deviance

> ddof = lorm$df.null - lorm$df.residual

> dd; ddof

[1] 231

[1] 1

Then the p-value as evidence in support of the null model is obtained by typing

> 1 - pchisq(q=dd, df=ddof)

[1] 0

This leads you to reject the null hypothesis in favor of themodel that includes latitude
as a covariate.
Amodel can fit well but still be inadequate if it is missing an important predictor or

if the relationship has a different form. Model adequacy is examined with the residual
deviance statistic. The test is performed under the null hypothesis that the model is
adequate (see §7.8). Under this hypothesis, the residual deviance has a χ -squared
distribution with residual degrees of freedom. Thus, to test the model for adequacy,
you type

> pchisq(q=lorm$deviance, df=lorm$df.residual)

[1] 4.24e-06

The small p-value indicates that the model is not adequate. So while formation lati-
tude is a statistically significant predictor of baroclinic hurricanes, the model can be
improved.
To try and improve things, you add another variable to the model. Here you

create a new model adding the latitude at which maximum intensity first occurred
(MaxLat) and examine the table of coefficients.

> lorm2 = glm(tb ˜ FirstLat + MaxLat, data=bh,

+ family="binomial")

> summary(lorm2)$coefficients

Estimate Std. Error z value Pr(>|z|)

(Intercept) -8.560 0.9770 -8.76 1.93e-18

FirstLat 0.504 0.0662 7.62 2.50e-14

MaxLat -0.134 0.0482 -2.77 5.57e-03
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Although the latitude at maximum intensity is also statistically significant, something
is wrong. The sign on the coefficient is negative indicating that baroclinic hurricanes
are more likely if maximum latitude occurs farther south. This lacks physical sense,
and it indicates a problemwith the model.
The problem arises because of the high correlation between your two explanatory

variables (see Chapter 3). You check the correlation between the two variables by
typing

> cor(bh$FirstLat, bh$MaxLat)

[1] 0.855

The correlation exceeds 0.6, so it is best to remove one of your variables. You go
back to your one-predictor model, but this time you usemaximum latitude. You again
check the model for statistical significance and adequacy and find both.

> lorm3 = glm(tb ˜ MaxLat, data=bh, family="binomial")

> summary(lorm3)$coefficients

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.965 0.6760 -8.82 1.10e-18

MaxLat 0.207 0.0236 8.78 1.58e-18

> pchisq(q=lorm3$deviance, df=lorm3$df.residual)

[1] 0.543

Thus, you settle on a final model that includes the latitude at maximum intensity as
the sole predictor.

7.10.6 ReceiverOperating Characteristics

Your model predicts the probability that a hurricane has baroclinic influences given
its latitude at lifetime maximum intensity. To make a decision from this forecast, you
need to choose a threshold probability. For example, if the probability exceeds 0.5,
then you predict a baroclinic hurricane.
Given your set of hindcast probabilities, one for each hurricane, and a threshold

probability, you can create a two-by-two table of observed versus hindcast frequencies
indicating how many times you correctly forecast baroclinic and tropical hurricanes.
Here you do this using the table function on the logical vector of your predictions
together with the vector of observed hurricane types.

> tab = table(predict(lorm3, type="response") > .5,

+ bh$tb)

> dimnames(tab) = list(Predicted=c("True",

+ "False"), Observed=c("BE", "TO"))

> tab

Observed

Predicted BE TO
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True 147 51

False 40 99

Note that you use the dmnames function on the table object to get the row and
column names. The results show that of the 150 tropical-only hurricanes, 99 are pre-
dicted as such by the model using the threshold of 0.5 probability. Similarly, of the
187 baroclinic hurricanes, 147 are predicted as such by the model.
In this binary setup, 147 is the number of true positives, 40 is the number of false

negatives, 51 is the number of false positives, and 99 is the number of true negatives.
The sensitivity of your classification scheme is defined as the true-positive propor-
tion given as 147/(147+40) = 79%. The specificity is defined as the true-negative
proportion given as 99/(40+99)= 71 %.
Note that the values for sensitivity and specificity depend on your choice of thresh-

old. For example, by increasing the threshold to 0.7, the sensitivity changes to 94
percent and the specificity to 90 percent.
The false-positive proportion is one minus the specificity. As you allow for more

false positives, you can increase the sensitivity of your model. In the limit, if your
model predicts all hurricanes to be BE, then it will be perfectly sensitive (it makes
no mistakes in predicting every baroclinic hurricane as baroclinic), but it will not be
specific enough to be useful.
A graph of the sensitivity versus the false-positive rate (1−specificity) as the deci-

sion threshold is varied is called an ROC curve. Here you use the code in roc.R (Peter
DeWitt) to generate the ROC curves for your logistic model. Source the code by
typing

> source("roc.R")

The roc function uses themodel formula together with a set of training (testing) and
validation data to generate ROC output. Here you use the sample function to take
168 random samples from the set of integers representing the sequence of hurricanes.
The corresponding set of hurricanes is used for training and the remaining hurricanes
are used for validation.

> set.seed(23456)

> idx = sample(dim(bh)[1], trunc(.5*dim(bh)[1]))

> out = roc(formula(lorm), data = bh[idx, ],

+ testing.data=bh[-idx, ], show.auc=FALSE)

The output is a list of three elements with the first two containing the area under the
ROC curves for the test and validation data, respectively. To plot the curves, type

> out$plot

Figure 7.10 ismade usingggplot (see Chapter 5) and shows the twoROC curves
corresponding to the training and validation data sets. The area under the curve is an
indication of the amount of model skill with the diagonal line (dotted) indicating no
skill. To list the areas, type
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Figure 7.10 ROC
curves for the logistic
regression model of
hurricane type.

> round(out$testing.auc, 3)

[1] 0.944

> round(out$validation.auc, 3)

[1] 0.905

Both values are close to 1 indicating a skillful model. In general, you expect the
validation area to be less than the testing area.
You interpret the ROC curve as follows. Looking at the graph, if you allow a false-

positive proportion of 20 percent (0.2 on the horizontal axis), then you can expect
to correctly identify 84 percent of the future BE hurricanes. Since you are interested
in future hurricanes, you use the validation curve. Note that if you want to perform
better than that, say correctly identifying 95 percent of future BE hurricanes, then you
need to accept a false-positive rate of about 40 percent.
This chapter showed how to build models for the occurrence of hurricanes. We

began by modeling the annual counts of U.S. hurricanes with a Poisson regression
and using environmental variables as covariates.We showed how tomake predictions
with the model and interpret the coefficients. We showed how to assess forecast skill
including how to run a cross-validation exercise. We then showed how to include
nonlinear terms in the regression with multivariate adaptive regression splines. We
also took a look at a zero-inflated and a random forest model. We finished with an
examination of logistic regression for predicting hurricane type. We showed how to
interpret the coefficients, make predictions, and evaluate the ROCs when a decision
threshold is imposed.




