
Elsner: “06˙ELSNER˙CH06” — 2012/9/24 — 19:48 — page 133 — #1

6
DATA SETS

“Data, data, data, I cannot make bricks without clay.”
—Sherlock Holmes

Hurricane data originate from careful analysis of past storms by operationalmeteorol-
ogists. The data include estimates of the hurricane position and intensity at 6-hourly
intervals. Information related to landfall time, local wind speeds, damages, and deaths,
as well as cyclone size, are included. The data are archived by season.
Some effort is needed to make the data useful for hurricane climate studies. In this

chapter, we describe the data sets used throughout this book. We show you a work
flow that includes importing, interpolating, smoothing, and adding attributes.We also
show you how to create subsets of the data. Code in this chapter is more complicated
and it can take longer to run. You can skip this material on first reading and continue
with model building in Chapter 7. You can return here when you have an updated
version of the data that includes the most recent years.

6.1 BEST-TRACKS DATA

Most statistical models in this book use the best-track data. Here we describe these
data and provide original source material. We also explain how to smooth and
interpolate them. Interpolations are needed for regional hurricane analyses.

6.1.1 Description

The best-track data set contains the 6-hourly center locations and intensities of all
known tropical cyclones across theNorthAtlantic basin, including theGulf ofMexico

133



Elsner: “06˙ELSNER˙CH06” — 2012/9/24 — 19:48 — page 134 — #2

134 Data Sets

andCaribbean Sea.The data set is calledHURDAT forHURricaneDATa. It is main-
tained by theU.S.NationalOceanic andAtmospheric Administration (NOAA) at the
National Hurricane Center (NHC).
Center locations are given in geographic coordinates (in tenths of degrees) and

the intensities, representing the one-minute near-surface (∼ 10 m) wind speeds, are
given in knots (1 kt = .5144 m s−1) and the minimum central pressures are given
in millibars (1 mb = 1 hPa). The data are provided in 6-hourly intervals starting
at 00 UTC (Universal Time Coordinate). The version of HURDAT file used here
contains cyclones over the period 1851 through 2010 inclusive.1 Information on the
history and origin of these data is found in Jarvinen et al (1984).
The file has a logical structure that makes it easy to read with a FORTRAN pro-

gram. Each cyclone contains a header record, a series of data records, and a trailer
record. Original best-track data for the first cyclone in the file is shown here.

00005 06/25/1851 M= 4 1 SNBR= 1 NOT NAMED XING=1 SSS=1

00010 06/25*280 948 80 0*280 954 80 0*280 960 80 0*281 965 80 0*
00015 06/26*282 970 70 0*283 976 60 0*284 983 60 0*286 989 50 0*
00020 06/27*290 994 50 0*295 998 40 0*3001000 40 0*3051001 40 0*
00025 06/28*3101002 40 0* 0 0 0 0* 0 0 0 0* 0 0 0 0*
00030 HRBTX1

The header (beginning with 00005) and trailer (beginning with 00030) records
are single rows. The header has eight fields. The first field is the line number in inter-
vals of five and padded with leading zeros. The second is the start day for the cyclone
in MM/DD/YYYY format. The third is M= 4, indicating four data records to fol-
low before the trailer record. The fourth field is a number indicating the cyclone
sequence for the season; here, 1 indicates the first cyclone of 1851. The fifth field,
beginning with SNBR=, is the cyclone number over all cyclones and all seasons. The
sixth field is the cyclone name. Cyclones were named beginning in 1950. The sev-
enth field indicateswhether the cyclone hit theUnitedStates, withXING=1 indicating
that it did and XING=0 indicating that it did not. A hit is defined as the center of the
cyclone crossed the coast on the continental United States as a tropical storm or hur-
ricane. The final field indicates the Saffir–Simpson hurricane scale (1–5) impact in
the United States based on the estimated maximum sustained winds at the coast. The
value 0 was used to indicate U.S. tropical storm landfalls but has been deprecated.
The next four rows contain the data records. Each row has the same format. The

first field is again the line number. The second field is the cyclone day in MM/DD
format. The next 16 fields are divided into four blocks of four fields each. The first
block is the 00UTC record, and the next three blocks are in 6-hour increments (6, 12,
and 18 UTC). Each block is the same and begins with a code indicating the stage of
the cyclone, tropical cyclone *, subtropical cyclone S, extratropical low E, wave W,
and remanent low L. The three digits immediately to the right of the stage code is
the latitude of the center position in tenths of degree north (280 is 28.0◦N) and the
next four digits are the longitude in tenths of a degree west (948 is 94.8◦W) followed
by a space. The third set of three digits is the maximum sustained (1 minute) surface

1 From www.nhc.noaa.gov/pastall.shtml#hurdat, August 2011.
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(10 m) wind speed in knots. These are estimated to the nearest 10 kt for cyclones
before to 1886 and to 5 kt afterward. The final four digits after another space is the
central surface pressure of the cyclone in millibars if available. If not, the field is given
a zero. Central pressures are available for all cyclones after 1978.
The trailer has at least two fields. The first field is the line number. The second

field is the maximum intensity of the cyclone as a code using HR for hurricane, TS
for tropical storm, and SS for subtropical storm. If there are additional fields, they
relate to landfall in the United States. The fields are given in groups of four with the
first three indicating location by state and the last indicating the Saffir–Simpson scale
based on wind speeds in the state. Two-letter state abbreviations are used, with the
exception of Texas and Florida, which are further subdivided as follows: ATX, BTX,
CTX for south, central, and north Texas, respectively, and AFL, BFL, CFL, and DFL
for northwest, southwest, southeast, and northeast Florida, respectively. An I is used
as a prefix in cases where a cyclone had hurricane impact is in a noncoastal state.

6.1.2 Import

The HURDAT file (e.g., tracks.txt) is appended each year with the set of cyclones
from the previous season. The latest version is available usually by late spring or early
summer from www.nhc.noaa.gov/pastall.shtml. Additional modifications
to older cyclones are made when newer information becomes available. After down-
loading the HURDAT file, we use a FORTRAN executable file for the Windows
platform (BT2flat.exe) to create a flat file (BTflat.csv) listing the data records. The
file is created by typing

BT2flat.exe tracks.txt > BTflat.csv

The resulting comma-separated flat file is read into R and the lines between the
separate cyclone records removed by typing

> best = read.csv("BTflat.csv")

> best = best[!is.na(best[, 1]),]

Further adjustment are made to change the hours to ones, the longitude to degrees
east, and the column name for the type of cyclone.

> best$hr = best$hr/100

> best$lon = -best$lon

> east = best$lon < -180

> best$lon[east] = 360 + best$lon[east]

> names(best)[12] = "Type"

The first six lines of the data frame are shown here (head(best)).

SYear Sn name Yr Mo Da hr lat lon Wmax pmin Type

1 1851 1 NOT NAMED 1851 6 25 0 28.0 -94.8 80 0 *
2 1851 1 NOT NAMED 1851 6 25 6 28.0 -95.4 80 0 *
3 1851 1 NOT NAMED 1851 6 25 12 28.0 -96.0 80 0 *
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4 1851 1 NOT NAMED 1851 6 25 18 28.1 -96.5 80 0 *
5 1851 1 NOT NAMED 1851 6 26 0 28.2 -97.0 70 0 *
6 1851 1 NOT NAMED 1851 6 26 6 28.3 -97.6 60 0 *

Note the 10-kt precision on the Wmax column. This is reduced to 5 kt from 1886
onward.
Cyclones in the data frame are identified by SYear and Sn. To make it easier to

subset by cyclone you add a unique cyclone identifier as follows. First, use the paste
function to create a character id string that combines the SYear and Sn columns.
Second, table the number of cyclone records with each character id and save these
as an integer vector (nrs). Third, create a structured vector indexing the number
of cyclones beginning with the first one. Fourth, repeat the index by the number of
records in each cyclone and save the result in a Sid vector.

> id = paste(best$SYear, format(best$Sn), sep = ":")

> nrs = as.vector(table(id))

> cycn = 1:length(nrs)

> Sid = rep(cycn, nrs[cycn])

Next create a column identifying s. This is needed to perform time interpolations.
Begin by creating a character vector with strings identifying the year, month, day,
and hour. Note that first you need to take care of years when cyclones crossed into
a new calendar year. In the best-track file, the year remains the year of the season. The
character vector is turned into a POSIXlt object with the strptime function (see
Chapter 5) and the time zone argument set to GMT (UTC).

> yrs = best$Yr

> mos = best$Mo

> yrs[mos==1] = yrs[mos==1]+1

> dtc = paste(yrs, "-", mos, "-", best$Da, " ",

+ best$hr, ":00:00", sep="")

> dt = strptime(dtc, format="%Y-%m-%d %H:%M:%S",

+ tz="GMT")

Each cyclone record begins at 0, 6, 12, or 18 UTC. Retrieve those hours for each
cyclone using the cumsum function and the number of cyclone records as an index.
Offsets are needed for the first and last cyclones. Then subsample the time vector
obtained here at the corresponding values of the index and populate those times for
all cyclone records. Then, the cyclone hour is the time difference between the two
vectors in units of hours and is saved as Shour.

> i0 = c(1, cumsum(nrs[-length(nrs)]) + 1)

> dt0 = dt[i0]

> dt1 = rep(dt0, nrs[cycn])

> Shour = as.vector(difftime(dt, dt1, units="hours"))

Finally, include the two new columns in the best data frame.
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> best$Sid = Sid

> best$Shour = Shour

> dim(best)

[1] 41192 14

The best-track data provide information on 1,442 individual tropical cyclones over
the period 1851–2010, inclusive. The data frame you created contains these data in
41,192 separate 6-hourly records each having 14 columns. You can output the data as
a spreadsheet using the write.table function.
If you want to send the file to someone that uses R or load it into another R session,

use the save function. This exports a binary file that is imported back using the load
function.

> save(best, file="best.RData")

> load("best.RData")

Alternatively, youmight be interested in the functions available in theRNetCDF and
ncdf packages for exporting data in Network Common Data Form.

6.1.3 Intensification

You can add value to these data by computing intensification (and decay) rates.
The rate of change is estimated with as a derivative. Here you use the Savitzky–
Golay smoothing filter (Savitzky and Golay, 1964) specifically designed for calcu-
lating derivatives. The filter preserves the maximum and minimum cyclone inten-
sities. Moving averages dampen the extremes and derivatives estimated using finite
differencing have larger errors.
The smoothed value of wind speed at a particular location is estimated using a local

polynomial regression of degree three on a window of six values (including three
locations before and two after). This gives a window width of 1.5 days. The daily
intensification rate is the coefficient on the linear term of the regression divided by
0.25, since the data are given in quarter-day increments. A third-degree polynomial
captures most of the fluctuation in cyclone intensity without overfitting and ensures
consistency with the 5-kt precision of the raw wind speed.
The functions are available in savgol.R. Download the file from the book web site

and source it. Then use the function savgol.best on your best data frame saving
the results back in best.

> source("savgol.R")

> best = savgol.best(best)

The result is an appended data frame with two new columns, WmaxS and DWmaxDt
giving the filtered estimates of wind speed and intensification, respectively. The fil-
tered speeds have units of knots to be consistent with the best-track winds and the
intensification rates are in knots per hour.
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Figure 6.1 Hurricane Katrina data.

As a comparison of the filtered and raw wind speeds, you look at the results from
Hurricane Katrina of 2005. To make the code easier to follow, first save the rows
corresponding to this cyclone in a separate object.

> Kt = subset(best, SYear == 2005 &

+ name == "KATRINA ")

Next, plot the raw wind speeds as points and then overlay the filtered winds as a red
line.

> plot(Kt$Shour, Kt$Wmax, pch=16, xlab="Cyclone Hour",

+ ylab="Wind Speed (m/s)")

> lines(Kt$Shour, Kt$WmaxS, lwd=2, col="red")

The spaces in the name after KATRINA are important as the variable name is a fixed-
length character vector. On average, the difference between the filtered and rawwind
speeds is 0.75m s−1, which is below the roundoff of 2.5m s−1 (15 kt) used in the best
track. Over the entire set of data, the difference is less, averaging 0.49 m s−1. Impor-
tantly, for estimating rates of change, the filtered wind speeds capture the maximum
cyclone intensity.
Figure 6.1 shows filtered (red) and raw (circles) wind speeds and intensification

rates (green) for Hurricane Katrina of 2005. Cyclone genesis occurred at 1800 UTC
on Tuesday, August 23, 2005. The cyclone lasted for 180 h (7.5 days) dissipating at
600 UTC on Wednesday, August 31, 2005. The maximum best-track wind speed of
77.2m s−1 occurs at cyclone hour 120. This value equals the smoothed wind speed at
that same hour.

6.1.4 Interpolation

For each cyclone, the observations are 6 h apart. For spatial analysis and modeling,
this can be too coarse as the average forward motion of hurricanes is about 6 m s−1
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(12 kt). You therefore fill in the data using interpolation to 1 h. You also add an
indicator variable for whether the cyclone is over land.
The interpolation is done with splines. The spline preserves values at the regu-

lar 6-hour times and uses a piecewise polynomial to obtain values between these
times. For the cyclone positions, the splines are done using spherical geometry. The
functions are available in interpolate.R.

> source("interpolate.R")

> load("landGrid.RData")

> bi = Sys.time()

> best.interp = interpolate.tracks(best,

+ get.land=TRUE, createindex=TRUE)

> ei = Sys.time()

Additionally, a land mask is used to determine whether the location is over land or
water. Be patient, as the interpolation takes time to run. To see how long it takes,
save the time (Sys.time()) before and after the interpolation and then take the
difference in seconds.

> round(difftime(ei, bi, units="secs"), 1)

Time difference of 108 secs

The interpolation output is saved in the objectbest.interp as two lists: the data
frame in a list called data and the index in a list called index. The index list is the
record number by cyclone. The data frame has 239,948 rows and 30 columns. Addi-
tional columns include information related to the spherical coordinates and whether
the position is over land as well as the cyclone’s forward velocity (magnitude and
direction). For instance, forward speed is in the column labeled maguv in units of
kt. To obtain the average speed in meter per second over all cyclones, type

> mean(best.interp$data$maguv) * .5144

Finally, you add a day of year (jd) column giving the number of days since January
1 of each year. This is useful for examining intraseasonal activity (see Chapter 10).
You use the function ISOdate from the chron package on the ISOtime column
in the best.interp$data data frame. You first create a POSIXct object for the
origin.

> x = best.interp$data

> start = ISOdate(x$Yr, 1, 1, 0)

> current = ISOdate(x$Yr, x$Mo, x$Da, x$hr)

> jd = as.numeric(current - start, unit="days")

> best.interp$data$jd = jd

> rm(x)

The hourly North Atlantic cyclone data prepared in the above manner are avail-
able in the file best.use.RData. The data include the best-track 6-hourly values plus
the smoothed and interpolated values using the methods described here. The file is
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created by selecting specific columns from the interpolated data frame above. For
example, type

> best.use = best.interp$data[, c("Sid", "Sn",

+ "SYear", "name", "Yr", "Mo", "Da", "hr", "lon",

+ "lat", "Wmax", "WmaxS", "DWmaxDt", "Type",

+ "Shour", "maguv", "diruv", "jd", "M")]

> save(best.use, file="best.use.RData")

You input these data as a data frame and list the first six lines by typing

> load("best.use.RData")

> head(best.use)

The load function imports an object saved as a compressed file with the save
function. The object name in your workspace is the file name without the .RData.
Once the hurricane data are prepared in the manner described above, you can use

functions to extract subsets of the data for particular applications. Here we consider
a function to add regional information to the cyclone locations and another function
to obtain the lifetime maximum intensity of each cyclone. These data sets are used
throughout the book.

6.1.5 Regional Activity

Information about a cyclone’s absolute location is available through the geographic
coordinates (latitude and longitude). It is convenient to also have relative location
information specifying, for instance, whether the cyclone is within a predefined area.
Here your interest is near-coastal cyclones, so you consider three U.S. regions includ-
ing the Gulf coast, Florida, and the East coast. The regions are shown in Figure 6.2.
Boundaries are whole number parallels and meridians. The areas are large enough to
capture enough cyclones, but not too large as to include many noncoastal strikes.

Gulf coast Florida

East coast

Figure 6.2 Coastal
regions.
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Relative location is coded as a logical vector indicating whether or not the cyclone
is inside the region. The three near-coastal regions are nonoverlapping, and you create
one vector for each region. But it is also of interest to know whether the cyclone was
in either of these areas or none of them.
The functions are in datasupport.R package.They include import.grid, which

inputs a text file defining the parallels and meridians of the near-coastal regions and
adds a regional name with the Gulf coast defined as region one, Florida defined as
region two, the East coast defined as region three, and the entire coast as region four.

> source("datasupport.R")

> grid = import.grid("gridboxes.txt")

> best.use = add.grid(data=best.use, grid=grid)

6.1.6 LifetimeMaximum Intensity

An important variable for understanding hurricane climate is lifetime maximum
intensity. Lifetime refers to the time from hurricane genesis to dissipation and life-
time maximum refers to the highest wind speed during this lifetime. The intensity
value and the location where the lifetime maximum occurs are of general interest.
Here you use the get.max function in the getmax.R package. To make it

accessible to your workspace, type

> source("getmax.R")

To apply the function on the best.use data frame using the default options
idfield="Sid" and maxfield="Wmax", type

> LMI.df = get.max(best.use)

List the values in 10 columns of the first 6 rows of the data frame rounding numeric
variables to one decimal place.

> round(head(LMI.df)[c(1, 5:9, 12, 16)], 1)

Sid Yr Mo Da hr lon WmaxS maguv

3.4 1 1851 6 25 16 -96.3 79.6 4.4

15 2 1851 7 5 12 -97.6 80.0 0.0

17 3 1851 7 10 12 -60.0 50.0 0.0

47.2 4 1851 8 23 2 -86.5 98.9 6.5

76.2 5 1851 9 15 2 -73.5 50.0 0.0

89.2 6 1851 10 17 2 -76.5 59.0 5.7

The data frame LMI.df contains the same information as best.use except here
there is only one row per cyclone. Each row contains the lifetime maximum intensity
and the corresponding location and other attribute information for the cyclone at the
time the maximum was first achieved. If a cyclone is at its lifetime maximum intensity
for more than 1 h, only the first hour information is saved. To subset the data frame of
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lifetimemaximum intensities for cyclones of tropical storm intensity or stronger since
1967 exporting the data frame as a text file, type

> LMI.df = subset(LMI.df, Yr >= 1967 & WmaxS >= 34)

> write.table(LMI.df, file="LMI.txt")

6.1.7 RegionalMaximum Intensity

Here your interest is the cyclone’s maximum intensity only when it is within a speci-
fied region (e.g., near the coast). You create a set of data frames arranged as a list that
includes the cyclone maximumwithin each of the regions defined in §6.1.5. You start
by defining the first and last years of interest and create a structured list of those years,
inclusive.

> firstYear = 1851

> lastYear = 2010

> sehur = firstYear:lastYear

These definitions make it easy for you to add additional of data as they become
available or to focus your analysis on data only over the most recent years.
Next define a vector of region names and use the function get.max.flags

(datasupport.R) to generate the set of data frames saved in the list object
max.regions.

> Regions = c("Basin", "Gulf", "Florida", "East", "US")

> max.regions = get.max.flags(se=sehur, field="Wmax",

+ rnames=Regions)

You view the structure of the resulting list with the str function. Here you specify
only the highest level of the list by setting the the argument max.level to one.

> str(max.regions, max.level=1)

List of 5

$ Basin :'data.frame': 1442 obs. of 23 variables:

$ Gulf :'data.frame': 246 obs. of 23 variables:

$ Florida:'data.frame': 330 obs. of 23 variables:

$ East :'data.frame': 280 obs. of 23 variables:

$ US :'data.frame': 606 obs. of 23 variables:

The object contains a list of five data frames with names corresponding to the regions
defined earlier. Each data frame has the same 1,442 columns of data defined in
best.use, but the number of rows depends on the number of cyclones passing
through the region. Note, the Basin data frame contains all cyclones.
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To list the first six rows and several of the columns in the Gulf data frame, type

> head(max.regions$Gulf[c(1:7, 11)])

Sid Sn SYear name Yr Mo Da Wmax

3.4 1 1 1851 NOT NAMED 1851 6 25 80.8

130.4 7 1 1852 NOT NAMED 1852 8 26 100.6

353.4 20 1 1854 NOT NAMED 1854 6 26 71.8

389.4 23 4 1854 NOT NAMED 1854 9 18 90.9

443.3 29 5 1855 NOT NAMED 1855 9 16 111.1

456.3 30 1 1856 NOT NAMED 1856 8 10 132.1

You treat max.regions$Gulf as a regular data frame although it is part of a list.
The output indicates that the sixth Gulf cyclone in the record is the 30th cyclone in
the best-track record (Sid column) and the 1st cyclone of the 1856 season. It has
a maximum intensity of 68 m s−1 while in the region. You export the data using the
save function as before.

> save("max.regions", file="max.regions.Rdata")

6.1.8 Tracks by Location

Suppose you want to know only about hurricanes that have affected a particular
location. Or those that have affected several locations (e.g., San Juan, Miami, and
Kingston). Hurricanes specific to a location can be extracted with functions in the
getTracks package. To see how this works, load the best.use.RData data and install
the source code.

> load("best.use.RData")

> source("getTracks.R")

The function is get.tracks. It takes as input the longitude and latitude of your
location alongwith the search radius (nautical miles) and the number of cyclones and
searches for tracks that are within this distance. It computes a score for each trackwith
closer cyclones getting a higher score.
Here you use the function to find the five cyclones of at least tropical storm strength

that have come closest to the Norfolk Naval Air Station (NGU) (76.28◦W longitude
and 36.93◦N latitude) during the period 1900 through 2010. You save the location
and a search radius of 100 nmi in a data frame. You also set the start and end years of
your search and the number of cyclones before calling get.tracks.

> loc = data.frame(lon=-76.28, lat=36.93, R=100)

> se = c(1900, 2010); Ns = 5

> ngu = get.tracks(x=best.use, locations=loc, N=Ns,

+ se=se)

> names(ngu)

[1] "tracks" "SidDist" "N" "locations"
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The output contains a list with four objects. The objects N and locations are the
input parameters. The object SidDist is the cyclone identifier for each cyclone
captured by the input criteria listed from closest to farthest from NGU. The corre-
sponding track attributes are given in the list object tracks with each component a
data frame containing the individual cyclone attributes from best.use. The tracks
are listed in order by increasing distance. For example, ngu$SidDist[1] is the dis-
tance of the closest track and ngu$tracks[[1]] is the data frame corresponding
to this track.
You plot the tracks on a map reusing the code from Chapter 5. Here you use a

gray scale on the track lines corresponding to a closeness ranking with darker lines
indicating closer tracks.

> map("world", ylim=c(12, 60), xlim=c(-90, -50))

> points(ngu$location[1, 1], ngu$location[1, 2],

+ col="red", pch=19)

> for(i in Ns:1){

+ clr = gray((i - 1)/Ns)

+ Lo = ngu$tracks[[i]]$lon

+ La = ngu$tracks[[i]]$lat

+ n = length(Lo)

+ lines(Lo, La, lwd=2, col=clr)

+ arrows(Lo[n - 1], La[n - 1], Lo[n], La[n], lwd=2,

+ length=.1, col=clr)

+ }

> box()

The results are shown in Figure 6.3 for two locations: NGU only and for two loca-
tions: NGU and Roosevelt Naval Air Station in Puerto Rico (NRR). Darker tracks
indicate closer cyclones. This application is useful for cyclone-relative hurricane
climatologies (see Scheitlin et al. [2010]).

a b

Figure 6.3 Five closest cyclones. (a) NGU and (b) NRR and NGU.



Elsner: “06˙ELSNER˙CH06” — 2012/9/24 — 19:48 — page 145 — #13

145 Best-Tracks Data

6.1.9 Attributes by Location

Location-specific hurricane attributes are needed for local surge andwindmodels. To
extract these data, first determine the cyclone observations within a grid box centered
on your location of interest. This is done using the inside.lonlat utility function
(getTracks.R). Here your location is NGU from above.

> ins = inside.lonlat(best.use, lon=loc[1, 1],

+ lat = loc[1, 2], r = 100)

> length(ins)

[1] 239948

Your grid box size is determined by twice the value of argument r in units of nau-
tical miles. The box is square as the distances are computed on a great-circle. The
function returns a logical vector with length equal to the number of cyclone hours in
best.use.
Next you subset the rows in best.use for values of TRUE in ins.

> ngu.use = best.use[ins, ]

Since your interest is cyclones of hurricane intensity, further subset using WmaxS.

> ngu.use = subset(ngu.use, WmaxS >= 64)

> length(unique(ngu.use$Sid))

[1] 54

There are 54 hurricanes passing through your grid box over the period of record. A
similar subset is obtained using a latitude/longitude grid by typing

> d = 1.5

> lni = loc[1, 1]

> lti = loc[1, 2]

> ngu.use = subset(best.use, lat <= lti + d &

+ lat >= lti - d & lon <= lni + d &

+ lni >= lni - d & WmaxS >= 64)

Finally use the get.max function to select cyclone-specific attributes. For exam-
ple, to determine the distribution ofminimum translation speeds for all hurricanes in
the grid and to put plot them as a histogram, type

> source("getmax.R")

> ngu.use$maguv = -ngu.use$maguv

> ngu.use1 = get.max(ngu.use, maxfield="maguv")

> speed = -ngu.use1$maguv * .5144

> hist(speed, las=1, xlab="Forward Speed (m/s)",

+ main="")

The results is shown in Figure 6.4. Notice that you take the additive inverse of
the speed since your interest is in the minimum. A parametric distribution is fit or
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resampling is used to generate inputs for hurricane surge and wind models. (see
Chapter 13).

6.2 ANNUAL AGGREGATION

It is also useful to have hurricane data aggregated in time. Aggregation is often done
annually since hurricane occurrence has a strong seasonal cycle (see Chapter 10).
Annual aggregation makes it convenient to merge hurricane data with monthly
climate variables.

6.2.1 Annual Cyclone Counts

Annual counts are the most frequently analyzed hurricane climate data. Here you
aggregate counts by year for the entire basin and the near-coastal regions defined
in §6.1.5. First, simplify the region names to a single letter using the substring
function making an exception to the U.S. region by changing it back to US.

> load("max.regions.RData")

> names(max.regions) = substring(names(max.regions),

+ 1, 1)

> names(max.regions)[names(max.regions)=="U"] = "US"

This allows you to add the Saffir–Simpson category as a suffix to the names.
The make.counts.basin function (datasupport.R) performs the annual

aggregation of counts by category and region with the max.regions list of data
frames as the input and a list of years specified with the se argument.

> source("datasupport.R")

> sehur = 1851:2010

> counts = make.counts.basin(max.regions, se=sehur,

+ single=TRUE)

> str(counts, list.len=5, vec.len=2)
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'data.frame': 160 obs. of 31 variables:

$ Year: int 1851 1852 1853 1854 1855 ...

$ B.0 : int 6 5 8 5 5 ...

$ B.1 : int 3 5 4 3 4 ...

$ B.2 : int 1 2 3 2 3 ...

$ B.3 : int 1 1 2 1 1 ...

[list output truncated]

The result is a data frame with columns labeled X.n for n= 0,1, . . . ,5, where X indi-
cates the region. For example, the annual count of hurricanes affecting Florida is given
in the column labeled F.1. The start year is 1851 and the end year is 2010.
Here you create a two-by-two matrix of plots showing hurricane counts by year for

the basin, and the U.S., Gulf Coast, and Florida regions. The with function allows
you to use the column names with the plotmethod.

> par(mfrow=c(2, 2))

> with(counts, plot(Year, B.1, type="h", xlab="Year",

+ ylab="Basin count"))

> with(counts, plot(Year, US.1, type="h", xlab="Year",

+ ylab="U.S. count"))

> with(counts, plot(Year, G.1, type="h", xlab="Year",

+ ylab="Gulf coast count"))

> with(counts, plot(Year, F.1, type="h", xlab="Year",

+ ylab="Florida count"))

The plots are shown in Figure 6.5. Regional hurricane counts indicate no long-term
trend, but the basinwide counts show an active period beginning late in the twenti-
eth century. Some of this variation is related to fluctuations in climate as examined
in Chapter 7. Next the annually and regionally aggregated counts are merged with
monthly and seasonal climate variables.

6.2.2 Environmental variables

The choice of climate variables is large. You narrow it down by considering what is
known about hurricane climate. For example, it is well understood that ocean heat
provides the fuel, a calm atmosphere provides a favorable setting, and the location and
strength of the subtropical ridge provide the steering currents. Thus statistical mod-
els of hurricane counts should include covariates that index these climate variables
including sea-surface temperature (SST), as an indicator of oceanic heat content,
El Niño-Southern Oscillation (ENSO) as an indicator of vertical wind shear, and
the North Atlantic Oscillation (NAO) as an indicator of steering flow. Variations in
solar activity might also influence hurricane activity. We speculate that an increase
in solar ultraviolet (UV) radiation during periods of strong solar activity might sup-
press tropical cyclone intensity as the temperature near the tropopause will warm
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Figure 6.5 Hurricane counts. (a) Basin, (b) U.S., (c) Gulf Coast, and (d) Florida.

through absorption of radiation by ozone and modulated by dynamic effects in the
stratosphere (Elsner and Jagger, 2008).
Thus you choose four climate variables including North Atlantic Ocean SST, the

Southern Oscillation Index (SOI) as an indicator of ENSO, an index for the NAO,
and sunspot numbers (SSN). Monthly values for these variables are obtained from
the following sources.

• SST: The SST variable is an area-weighted average (◦C) using values in 5◦
latitude–longitude grid boxes from the equator north to 70◦N latitude and span-
ning the North Atlantic Ocean (Enfield et al. 2001).2 Values in the grid boxes are
from a global SST data set derived from the UKMetOffice (Kaplan et al. 1998).

• SOI: The SOI is the contemporaneous difference in monthly sea-level pressures
between Tahiti (T) in the South Pacific Ocean and Darwin (D) in Australia
(T−D) (Trenberth, 1984).3 The SOI is inversely correlated with equatorial east-
ern and central Pacific SST, so an El Niño warm event is associated with negative
values of the SOI.

• NAO: The NAO is the fluctuation in contemporaneous sea-level pressure differ-
ences between the Azores and Iceland. An index value for the NAO is calculated
as the difference in monthly normalized pressures at Gibraltar and over Iceland

2 From www.esrl.noaa.gov/psd/data/correlation/amon.us.long.data,
November 2011.
3 From www.cgd.ucar.edu/cas/catalog/climind/SOI.signal.annstd.ascii ,
November 2011.
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(Jones et al, 1997).4 The NAO index indicates the strength and the position of the
subtropical Azores/Bermuda High.

• SSN: The SSN variable are the Wolf sunspot numbers measuring the number
of sunspots present on the surface of the sun. They are produced by the Solar
Influences Data Analysis Center (SIDC) of World Data Center for the Sunspot
Index at the Royal Observatory of Belgium and available from NOAA’s National
Geophysical Data Center.5

You combine these above climate and solar variables by month (May through
October) and season with the aggregate hurricane counts by year. You use the
useCov (datasupport.R) function to input the data. The file must have a column
indicating the year and 12 or 13 additional columns indicating the months and per-
haps an annual average. The argument miss inputs the missing value code that is
used in the file. The argument ma is for centering and scaling the values. The default
is none; "c" centers, "cs" centers and scales, and "l" subtracts the values in the
last row from values in each column. To accommodate using previous year’s data for
modeling current year’s cyclone counts, the resulting data frame is augmented with
columns corresponding to 1-year shift of all months using the argumentlast=TRUE.
Column names for the previous year’s months are appended with a .last.
You input and organize all climate variables at once with the readClimate

function. Copy and paste the code to your R session.

> readClimate = function(){

+ sst = readCov("data/amon.us.long.mean.txt",

+ header=FALSE, last=TRUE, miss=-99.990, ma="l",

+ extrayear=TRUE)

+ soi = readCov("data/soi_ncar.txt", last=TRUE,

+ miss=-99.9, extrayear=TRUE)

+ nao = readCov("data/nao_jones.txt", last=TRUE,

+ miss=c(-99.99, 9999), extrayear=TRUE)

+ ssn = readCov("data/sunspots.txt", header=TRUE,

+ last=TRUE, extrayear=TRUE)

+ return(list(sst=sst, soi=soi, nao=nao, ssn=ssn))

+ }

The list of data frames, one for each climate variable, is created by typing

> climate = readClimate()

> str(climate, max.level=1)

List of 4

$ sst:'data.frame': 157 obs. of 25 variables:

$ soi:'data.frame': 147 obs. of 25 variables:

4 From www.cru.uea.ac.uk/˜timo/datapages/naoi.htm, November 2011.
5 From ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SUNSPOT_NUMBERS/

INTERNATIONAL/monthly/MONTHLY, November 2011.
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$ nao:'data.frame': 192 obs. of 25 variables:

$ ssn:'data.frame': 162 obs. of 25 variables:

Each data frame has 25 columns (variables) corresponding to two sets of monthly
values (current and previous year) plus a column of years. The number of rows
(observations) in the data frames varies with theNAObeing the longest, starting with
the year 1821, although not all months in the earliest years have values.To list the first
six rows and several of the columns in the nao data frame, type

> head(climate$nao[c(1:2, 21:23)])

Yr Jan.last Aug Sep Oct

1 1821 NA -0.14 NA NA

2 1822 NA -0.19 -1.09 -2.00

3 1823 NA 2.90 0.67 -1.39

4 1824 -3.39 -0.08 0.19 NA

5 1825 -0.16 1.43 -0.95 1.98

6 1826 -0.23 2.72 -0.76 0.18

Note how climate$nao is treated as a data frame although it is part of a list.
The final step is to merge the climate data with the cyclone counts organized in

§6.2.1. This is done by creating a single data frame of your climate variables. First,
create a list of month names by climate variable. Here you consider only the months
fromMay through October. You use August through October as a group for the SOI
and SST variables,May and June as a group for the NAO variable, and September for
the SSN variable.

> months = list(

+ soi=c("May", "Jun", "Jul", "Aug", "Sep", "Oct"),

+ sst=c("May", "Jun", "Jul", "Aug", "Sep", "Oct"),

+ ssn=c("May", "Jun", "Jul", "Aug", "Sep", "Oct"),

+ nao=c("May", "Jun", "Jul", "Aug", "Sep", "Oct"))

> monthsglm = list(

+ soi=c("Aug", "Sep", "Oct"),

+ sst=c("Aug", "Sep", "Oct"),

+ ssn="Sep",

+ nao=c("May","Jun"))

Next, use the make.cov (datasupport.R) function on the climate data frame,
specifying the month list and the start and end years. Here you use the word “covari-
ate” in the statistical sense to indicate a variable this is predictive of cyclone activity.
In statistics, a covariate is also called an explanatory variable, an independent variable,
or a predictor.

> covariates = cbind(make.cov(data=climate,

+ month=months, separate=TRUE, se=sehur),

+ make.cov(data=climate, month=monthsglm,

+ separate=FALSE, se=sehur)[-1])
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The cbind function brings together the columns into a single data frame. The last six
rows and a sequence of columns from the data frame are listed by typing,

> tail(covariates[seq(from=1, to=29, by=5)])

Year soi.Sep sst.Aug ssn.Jul nao.Jun soi

155 2005 1.4 0.622 40.1 -1.00 0.800

156 2006 -1.9 0.594 12.2 -0.41 -3.867

157 2007 0.4 0.245 9.7 -3.34 0.833

158 2008 4.6 0.361 0.8 -2.05 3.767

159 2009 1.0 0.345 3.2 -3.05 -2.033

160 2010 8.0 0.725 16.1 -2.40 6.200

The columns are labeled X.m, where X indicates the covariate (soi, sst, sun, and
nao) and m indicates the month using a three-letter abbreviation with the first let-
ter capitalized. Thus, for example, June values of the NAO index are in the column
labelednao.Jun. The hurricane-season-averaged covariate is also given in a column
labeled without the month suffix. Season averages use August through October for
SST and SOI, May and June for NAO, and September only for SSN.
As you did with the counts, here you create a two-by-two plot matrix showing the

seasonal-averaged climate and solar variables by year (Fig. 6.6).

> par(mfrow=c(2, 2))

> with(covariates, plot(Year, sst, type="l",

+ xlab="Year", ylab="SST [C]"))

> with(covariates, plot(Year, nao, type="l",

+ xlab="Year", ylab="NAO [s.d.]"))

> with(covariates, plot(Year, soi, type="l",

+ xlab="Year", ylab="SOI [s.d.]"))

> with(covariates, plot(Year, ssn, type="l",

+ xlab="Year", ylab="Sunspot Count"))

The long-termwarming trend in SST is quite pronounced as is the cooling trend dur-
ing the 1960s and 1970s. The NAO values show large year-to-year variations and a
tendency for negative values during the early part of the twenty-first century.The SOI
values also show large interannual variations. Sunspot numbers show a pronounced
periodicity near 11 years (solar cycle) related to changes in solar dynamics.
Finally, you use the merge function to combine the counts and covariates

data frames, merging on the variable Yearwhich appears in both.

> annual = merge(counts, covariates, by="Year")

> save(annual, file="annual.RData")

The result is a single data framewith 160 rows and 59 columns. The rows correspond
to separate years and the columns include the cyclone counts by Saffir–Simpson
scale and the monthly covariates defined here. The data frame is exported to the file
annual.RData.
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Figure 6.6 Climate variables. (a) SST, (b) NAO, (c) SOI, and (d) sunspots.

6.3 COASTAL COUNTY WINDS

6.3.1 Description

Other hurricane data sets besides the best-track are available. County wind data are
compiled in Jarrell et al. (1992) from reports on hurricane experience levels for coastal
counties fromTexas toMaine. The data are codedby Saffir–Simpson category and are
available as an ExcelTMspreadsheet.6

The file consists of one row for each year and one column for each county. A cell
contains a number if a tropical cyclone affected the county in a given year, other-
wise, it is left blank. The number is the Saffir–Simpson intensity scale. For example,
a county with a value of 2 indicates that category-two scale wind speeds were likely
experienced at least somewhere in the county. If the number is inside parentheses,
then the county received an indirect hit and the highest winds were likely at least one
category weaker. Cells having multiple entries, separated by commas, indicate that
the county was affected by more than one hurricane during that year.
The data set is originally constructed as follows. First, a Saffir–Simpson category

is assigned to the hurricane at landfall based on central pressure and wind intensity
estimates in the best-track data set. Some subjectivity enters the assignment partic-
ularly with hurricanes during earlier years of the twentieth century and with storms
moving inland over a sparsely populated area. Thus there is some ambiguity about
the category for hurricanes with intensities near the category cutoff. The category is

6 From www.aoml.noaa.gov/hrd/hurdat/Data_Storm.html, November 2011.
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Table 6.1 Data symbols and interpretation. The symbol is from
Appendix C of Jarrell et al. (1992).

Saffir–Simpson Wind Speed Range
Symbol Range (m s−1)

(1) [0,1) 33–42
1 [1,2) 33–42
(2) [1,2) 33–42
2 [2,3) 42–50
(3) [1,3) 33–50
3 [3,4) 50–58
(4) [1,4) 33–58
4 [4,5) 58–69
(5) [1,5) 33–69
5 [5,∞) 69–1000

sometimes adjustedbasedon storm surge estimates, inwhich case the central pressure
may not agree with the scale assignment. Beginning with the 1996 hurricane season,
scale assignments are based solely on maximumwinds.
Second, a determination is made about which coastal counties received direct and

indirect hits. A direct hit is defined as the innermost core regions, or “eye,” moving
over the county. Each hurricane is judged individually based on the available data, but
a general rule of thumb is applied in cases of greater uncertainty. That is, a county is
regarded as receiving a direct hit when all or part of a county falls within a distance d to
the left of a storm’s landfall and a distance 2d to the right (with respect to an observer
at sea looking toward shore), where d is the radius to maximum winds defined as the
distance from the cyclone’s center to the circumference of maximum winds around
the center.
The determination of an indirect hit is based on a hurricane’s strength and size and

on the configuration of the coastline. In general, it is determined that the counties on
either side of the direct-hit zone that received hurricane force winds or tides of at least
1–2m above normal are considered an indirect hit. Subjectivity is also necessary here
because of coastline geography and uncertainty about the hurricane’s exact path.
Table 6.1 lists the possible cell entries for a given hurricane and our interpretations

of the symbol in terms of the Saffir–Simpson category andwind speed range. The first
column is the symbol used in Appendix C of Jarrell et al. (1992). The second column
is the corresponding Saffir–Simpson scale range likely experienced somewhere in the
county. The third column is the interpretedmaximum sustained (1min) near-surface
(10 m) wind speed range (m s−1).
The data are incomplete in the sense that you have a range of wind speeds rather

than a single estimate. In statistics, the data are called “interval censored.” Note that
(1) is the same as 1, because they both indicate a cyclone with at least hurricane-force
winds.
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6.3.2 Counts andMagnitudes

The raw data need to be organized. First, remove characters that code for information
not used. This includes codes such as ‘W’,‘E’,‘*’ and ‘ ’. Second, convert all combina-
tions of multiple-hit years, say (1, 2), to (1), (2) for parsing. Once parsed, all table
cells consist of character strings that are either blank or contain cyclone hit informa-
tion separated by commas. Finally, input the cleaned data to R with the first column
used for row names by typing

> cd = read.csv("HS.csv", row.names=1, header=TRUE)

Remove the state row and save as a separate vector by typing

> states = cd[1,]

> cdf = cd[-1,]

> cdf[c(1, 11), 1:4]

CAMERON WILLACY KENEDY KLEBERG

1900

1910 (2) (2) 2 2

Rows 1 and 11 are printed so that you can see the data frame structure. In 1900, these
four southern Texas counties were not affected by a hurricane (blank row), but a year
later, Kenedy and Kleberg counties had a direct hit by a category-two hurricane that
was also felt indirectly in Cameron andWillacy counties.
Next, you convert this data frame into a matrix object containing event counts and

a list object for eventmagnitudes. First set up a definition table to convert the category
data to wind speeds. Note the order is (1), . . ., (5), 1, . . ., 5. The column namestime
and time2 are required for use with Surv function to create a censored data type.

> wt = data.frame(

+ time = c(rep(33, 6), 42, 50, 58, 69),

+ time2 = c(42, 42, 50, 58, 69, 42, 50, 58, 69,

+ 1000))

> rownames(wt) = c(paste("(", 1:5, ")", sep=""),

+ paste(1:5))

Next, expand the data frame into a matrix. Each entry of the matrix is a character
string vector. The character string is a zero vector for counties without a hurricane
for a given year. For counties with a hurricane, the string contains symbols as shown
in Table 6.1, one for each hurricane. This is done using apply and the strsplit
function as follows:

> pd = apply(cdf, c(1, 2), function(x)

+ unlist(strsplit(gsub(" ", "", x), ",")))

Next, extract a matrix of counts and generate a list of events one for each county
along with a list of years required for matching with the covariate data. Note that the
year is extracted from the names of the elements.
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> counts = apply(pd, c(1, 2), function(x)

+ length(x[[1]]))

> events = lapply(apply(pd, 2, unlist),

+ function(x)

+ data.frame(Year=as.numeric(substr(names(x), 1, 4)),

+ Events=x, stringsAsFactors=FALSE))

Finally, convert events to wind speed categories. You do this using the Surv
function from the survival package (Therneau 2012) as follows:

> require(survival)

> winds = lapply(events, function(x)

+ data.frame(Year=x$Year,

+ W = do.call("Surv", c(wt[x$Events, ],

+ list(type="interval2")))))

The object winds is a list of the counties with each list containing a data frame. To
extract the data frame from county 57 corresponding toMiami-Dade county, type

> miami = winds[[57]]

> class(miami)

[1] "data.frame"

> head(miami)

Year W

1 1904 [33, 42]

2 1906 [33, 42]

3 1906 [50, 58]

4 1909 [50, 58]

5 1926 [58, 69]

6 1926 [33, 50]

The data frame contains a numerical year variable and a categorical survival variable.
The survival variable has three components indicating the minimum and maximum
Saffir–Simpson category.
You will use the winds and counts objects in Chapter 8 to create a probability

model for winds exceeding threshold intensity levels. Here you export the objects as
separate files using the save function so you can read them back using the load
function.

> save(winds, file="catwinds.RData")

> save(counts, file="catcounts.RData")

The saved files are binary (8-bit characters) to ensure that they transfer without
converting end-of-line markers.
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6.4 NETCDF FILES

Climate data, such as monthly SST grids, are organized as arrays and stored in
netCDF files. NetCDF (Network Common Data Form) is a set of software libraries
and data formats from the Unidata community that support the creation, access,
and sharing of data arrays. The National Center for Atmospheric Research (NCAR)
uses netCDF files to store large data sets. The ncdf package (Pierce, 2011) provides
functions for working with netCDF files in R. Install the package by typing

> require(ncdf)

You also might want to check out the functions available in RNetCDF for processing
netCDF files.
Here your interest is with NOAA’s extended reconstructed SST version 3b data set

for the North Atlantic Ocean.7 The data are provided by the NOAA/OAR/ESRL
PSD in Boulder, Colorado. The data are available in file sstna.nc for the domain
bounded by the equator and 70◦N latitude and 100◦W and 10◦E longitude for the
set of months starting with January 1854 through November 2009.
First, use the function open.ncdf to input the SST data.

> nc = open.ncdf("sstna.nc")

Next, convert the nc object of class ncdf into a three-dimension array and print the
array’s dimensions.

> sstvar = nc$var$sst

> ncdata = get.var.ncdf(nc, sstvar)

> dim(ncdata)

[1] 56 36 1871

> object.size(ncdata)

30175696 bytes

The file contains 3,771,936 monthly SST values distributed across 56 longitudes, 36
latitudes, and 1,871 months.
Additional work is needed before analysis can begin. First, extract the array dimen-

sions as vector coordinates of longitudes, latitudes, and time. Then change the longi-
tudes to negative west of the primemeridian and reverse the latitudes to increase from
south to north. Also convert the time coordinate to a POSIX time (see Chapter 5)
using January 1, 1,800, as the origin.

> vals = lapply(nc$var$sst$dim, function(x)

+ as.vector(x$vals))

> vals[[1]] = (vals[[1]] + 180) %% 360 - 180

> vals[[2]] = rev(vals[[2]])

> timedate = as.POSIXlt(86400 * vals[[3]],

7 From www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.html, Novem-
ber 2011.
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+ origin=ISOdatetime(1800, 1, 1, 0, 0, 0, tz="GMT"),

+ tz="GMT")

> timecolumn = paste("Y", 1900 + timedate$year, "M",

+ formatC(as.integer(timedate$mo + 1), 1, flag="0"),

+ sep="")

> names(vals) = sapply(nc$var$sst$dim, "[", "name")

> vals = vals[1:2]

Note that the double percent symbol is the modulo operator, which finds the remain-
der of a division of the number to the left of the symbol by the number to the
right.
Next, coerce the array into a data framewith one column per time period and assign

column names.

> ncdata1 = ncdata[, (dim(ncdata)[2]:1), ]

> dims = dim(ncdata1)

> dim(ncdata1) = c(dims[1] * dims[2], dims[3])

> colnames(ncdata1) = timecolumn

> ncdata1 = as.data.frame(ncdata1)

> ncdataframe = cbind(expand.grid(vals), ncdata1)

Then findmissing values at nonland locations and save the resulting data frame.

> misbyrow = apply(ncdataframe, 1, function(x)

+ sum(is.na(x)))

> ncdataframe = ncdataframe[misbyrow==0, ]

> save("ncdataframe", file="ncdataframe.RData")

Finally, to create a subset data frame with only July 2005 SST values on your
latitude–longitude grid by typing

> sst = ncdataframe[paste("Y2005", "M",

+ formatC(7, 1, flag="0"), sep="")]

> names(sst) = "SST"

> sst$lon = ncdataframe$lon

> sst$lat = ncdataframe$lat

> write.table(sst, file="sstJuly2005.txt")

These data are used in Chapters 7 and 9.
This chapter showed how to extract hurricane data sets from raw data files. We

began by showing how to create a spreadsheet-friendly flat file from the available
best-tracks. We showed how to add value to these data by smoothing, interpolating,
and computing derivative variables. We also showed how to parse the data region-
ally and locally and to create a subset based on lifetime maximum intensity. Next, we
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demonstrated how to aggregate the data annually and insert relevant environmental
variables.We then examined a coastal county wind data set and showed how to work
with NetCDF files.
Part II focuses on using these data to analyze and model hurricane activity. We

begin, in Chapter 7 with models for hurricane frequency.
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