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5
GRAPHS AND MAPS

“The ideal situation occurs when the things that we regard as beautiful are also regarded
by other people as useful.”
—Donald Knuth

Graphs andmaps help you reason with data.They also help you communicate results.
A good graph gives you the most information in the shortest time, with the least ink
in the smallest space (Tufte, 1997). In this chapter, we show you how tomake graphs
andmaps using R.
A good strategy is to follow along with an open session, typing (or copying) the

code as you read. Before you begin make sure you have the following data sets
available in your working directory. Do this by typing

> SOI = read.table("SOI.txt", header=TRUE)

> NAO = read.table("NAO.txt", header=TRUE)

> SST = read.table("SST.txt", header=TRUE)

> A = read.table("ATL.txt", header=TRUE)

> US = read.table("H.txt", header=TRUE)

Not all the code is shown but all is available on our Web site.

5.1 GRAPHS

It is easy to make a graph. Here we provide guidance to help you make informa-
tive graphs. It is a tutorial on how to create publishable figures from your data. In
R you have several choices. With the standard (base) graphics environment, you can
produce a variety of plots with fine details. Most of the figures in this book use the
standard graphics environment. The grid graphics environment is even more flexible.
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Figure 5.1 Box plot of the October SOI.

It allows you to design complex layouts with nested graphs where scaling is main-
tained upon resizing. The lattice and ggplot2 packages use grid graphics to create
more specialized graphing functions andmethods.The spplot function for example
is plot method built with grid graphics that you will use to create maps. The ggplot2
package is an implementation of the grammar of graphics combining advantages from
the standard and lattice graphic environments. It is worth the effort to team.We begin
with the standard graphics environment.

5.1.1 Box Plot

A box plot is a graph of the five-number summary. The summary function applied
to data produces the sample mean along with five other statistics including the mini-
mum, the first quartile value, the median, the third quartile value, and the maximum.
The box plot graphs these numbers. This is done using the boxplot function. For
example, to create a box plot of your October SOI data, type

> boxplot(SOI$Oct, ylab="October SOI (s.d.)")

Figure 5.1 shows the results. The line inside the box is the median value. The bottom
of the box (lower hinge) is the first quartile value and the top of the box (upper hinge)
is the third quartile. The vertical line (whisker) from the top of the box extends to
the maximum value and the vertical line from the bottom of the box extends to the
minimum value.
Hinge values equal the quartiles exactly when there is an odd number of obser-

vations. Otherwise, hinges are the middle value of the lower (or upper) half of the
observations if there is an odd number of observations below the median and are the
middle of two values if there is an even number of observations below the median.
The fivenum function gives the five numbers used by boxplot. The height of the
box is the interquartile range (IQR) and the range is the distance from the bottom of
the lower whisker to the top of the upper whisker.
By default, the whiskers are drawn as a dashed line extending from the box to

the minimum and maximum data values. Convention is to make the length of the
whiskers no longer than 1.5 times the height of the box. The outliers, data values
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larger or smaller than this range, are marked separately with points. Figure 5.1 also
shows the box plot for the August SOI values. The text identifies the values. Here
there is a single outlier. In this case, the upper whisker extends to the last data value
less than 1.5× IQR.
For example, if you type

> Q1 = fivenum(SOI$Aug)[2]

> Q2 = fivenum(SOI$Aug)[3]

> Q3 = fivenum(SOI$Aug)[4]

> Q2 + (Q3 - Q1) * 1.5

[1] 2.28

you see one observation greater than 2.3. In this case, the upper whisker ends at
the next highest observation value less than 2.3. Observations above and below the
whiskers are considered outliers. You can find the value of the single outlier of the
August SOI by typing

> sort(SOI$Aug)

The largest observation in the data less than 2.3 is 2.2.
Your observations are said to be symmetric if the median is near the middle of the

box with the two whiskers of equal lengths. A symmetric set of observations will also
have the same number of high and low outliers.
Twenty-five percent of all your observations are below the lower quartile (below

the box), 50% are below (and above) the median, and 25% are above the upper
quartile. The box contains 50% of all your data. The upper whisker extends from
the upper quartile to the maximum and the lower whisker extends from the lower
quartile value to the minimum except if they exceed 1.5 times the interquartile
range above the upper or below the lower quartiles. In this case, outliers are plot-
ted as points. This outlier option can be turned off by setting the range argument
to zero.
The box plot is an efficient graphical summary of your data. By removing the box

lines altogether, the same information is available with less ink. Figure 5.2 is series
of box plots representing the SOI for each month. The dot represents the median;
the ends of the lines toward the dot are the lower and upper quartiles, respectively;
the ends of the lines toward the bottom and top of the graph are the minimum and
maximum values, respectively.

5.1.2 Histogram

A histogram is a graph of the distribution of your observations. It shows where the
values tend to cluster and where they tend to be sparse. The histogram is similar but
not identical to a bar plot (see Chapter 2). The histogram uses bars to indicate fre-
quency (or proportion) in data intervals, whereas a bar plot uses bars to indicate the
frequency of data by categories. The hist function creates a histogram.
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Figure 5.2 Five-number summary of the monthly SOI.

Consider NOAA’s annual values of accumulated cyclone energy (ACE) for the
North Atlantic and July SOI values. Annual ACE is calculated by squaring the
maximum wind speed for each six-hour tropical cyclone observation and sum-
ming over all cyclones in the season. The values obtained from NOAA (http://
www.aoml.noaa.gov/hrd/tcfaq/E11.html) are expressed in units of knots
squared ×104. You create the two histograms and plot them side by side. First set
the plotting parameters with the par function. Details on plotting options are given
in Murrell (2006). After your histogram is plotted, the function rug adds tick marks
along the horizontal axis at the location of each observation (like a floor carpet).

> par(mfrow=c(1, 2), pty="s")

> hist(A$ACE)

> rug(A$ACE)

> hist(SOI$Jul)

> rug(SOI$Jul)

Figure 5.3 shows the result. Herewe added an axis label, turned off the default title,
and placed text (“a” and “b”) in the figure margins. Plot titles are useful in presenta-
tions, but are redundant in publication. The default horizontal axis label is the name
of the data vector. The default vertical axis is frequency and is labeled accordingly.
Default values for the hist function options provide a good starting point, but you

might want to make adjustments. It helps to know how the histogram is assembled.
First a contiguous collection of disjoint intervals, called bins (or classes), is chosen
that cover the range of data values. The default for the number bins is the value
�log2 (n) + 1�, where n is the sample size and �� indicates the ceiling value (next
largest integer). If you type

> n = length(SOI$Jul)

> ceiling(log(n, base=2) + 1)

[1] 9
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Figure 5.3 Histograms of (a) ACE and (b) SOI.

you can see that adjustments are made to this number so that the cut points corre-
spond to whole number data values. In the case of ACE, the adjustment results in 7
bins and in the case of the SOI it results in 11 bins. Thus the computed number of
bins is a suggestion that gets modified to make for nice breaks.
The bins are contiguous and disjoint so the intervals look like (a,b] or [a,b) where

the interval (a,b] means from a to b including b but not a. Next, the number of data
values in each of the intervals is counted. Finally, a bar is drawn above the interval
so that the bar height is the number of data values (frequency). A useful argument
to make your histogram understandable is prob=TRUE, which allows you to set the
bar height to the density, where the sum of the densities times the bar interval width
equals one.
You conclude that ACE is positively skewed with some few years having very large

values. By contrast, the SOI appears symmetric with short tails as you would expect
from a normal distribution.

5.1.3 Density Plot

Ahistogram outlines the general shape of your data. Usually that is sufficient. You can
adjust the number of bins (or bin width) to get more or less detail on the shape. An
alternative is a density plot. A density plot captures the distribution shape by smooth-
ing the histogram. Instead of specifying the bin width, you specify the amount (and
type) of smoothing. There are two steps. First you use the density function to
obtain a set of kernel density estimates from your observations. Second you plot these
estimates using the plotmethod.
A kernel density is a function that provides an estimate of the average number of

values at any location in the space defined by your data. This is illustrated in Figure
5.4, where the October SOI values in the period 2005–2010 are indicated as a rug,
and a kernel density function is shown as the black curve. The height of the function,
representing the local density, is a sum of the heights of the individual kernels shown
in red.
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Figure 5.4 Density of October SOI (2005–2010).
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Figure 5.5 Density of June NAO. (a) .1, (b) .2, (c) .5, and (d) 1 s.d. bandwidth.

The kernel is a Gaussian (normal) distribution centered at each data value. The
width of the kernel, called the bandwidth, controls the amount of smoothing. The
bandwidth is the standard deviation of the kernel in the density function. This
means the inflection points on the kernel occur one bandwidth away from the data
location in units of the data values. Here with the SOI in units of standard deviation,
the bandwidth equals .5 s.d.
A larger bandwidth produces a smoother density plot for a fixed number of obser-

vations because the kernels have greater overlap. Figure 5.5 shows the density plot of
June NAO values from the period 1851 to 2010 using bandwidths of .1, .2, .5, and 1.
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Figure 5.6 Density and histogram of June NAO.

The smallest bandwidth produces a density plot that has spikes as it captures the fine-
scale variability in the distribution of values. As the bandwidth increases, the spikes
disappear and the density gets smoother. The largest bandwidth produces a smooth
symmetric density centered on the value of zero.
To create a density plot for the NAO values with a histogram overlay, type

> d = density(NAO$Jun, bw=.5)

> plot(d, main="", xlab="June NAO [s.d.]",

+ lwd=2, col="red")

> hist(NAO$Jun, prob=TRUE, add=TRUE)

> rug(NAO$Jun)

The density function takes your vector of data values as input and allows you to spec-
ify a bandwidth using the bw argument. Here you are using the vector of June NAO
values and a bandwidth of .5 s.d. The bandwidth units are the same as the units of your
data, here s.d. for theNAO. The output is saved as a density object, here called d. The
object is then plotted using the plotmethod. You turn off the default plot title with
the main="" and you specify a label for the values to be plotted below the horizontal
axis. You specify the line width as 2 and the line color as red.
You then overlay the histogram using the hist function (see Figure 5.6). You

use the prob=TRUE argument to make the bar height proportional to the density.
The add=TRUE argument is needed so that the histogram plots on the same graph.
One reason for plotting the histogram or density is to see whether your data can be
described by a normal distribution. TheQ–Q plot provides another way to make this
assessment.

5.1.4 Q–QPlot

A Q–Q plot is a way to compare distributions. It does this by plotting quantile (Q)
values of one distribution against the corresponding quantile (Q) values of the other
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Figure 5.7 Q-Q normal plot of (a) ACE and (b) July SOI.

distribution. In the case of assessing whether or not your data are normally dis-
tributed, the sample quantiles are plotted on the vertical axis and quantiles from a
standard normal distribution are plotted along the horizontal axis. In this case, it is
called a Q–Q normal plot.
That is, the kth smallest observation is plotted against the expected value of the kth

smallest random value from an N(0,1) sample of size n. The pattern of points in the
plot is then used to compare your data against a normal distribution. If your data are
normally distributed then the points align along the y= x line shown on the plot.
This is done using the qqnorm function. To make side-by-side Q–Q normal plots

for the ACE values and the July SOI values, you type

> par(mfrow=c(1, 2), pty="s")

> qqnorm(A$ACE)

> qqline(A$ACE, col="red")

> qqnorm(SOI$Jul)

> qqline(SOI$Jul, col="red")

The plots are shown in Figure 5.7. The quantiles are nondecreasing.The y= x line
is added to the plot using the qqline function. Additionally, we adjusted the vertical
axis label and turned the default title off.
The plots show that July SOI values appear to have a normal distribution while

the seasonal ACE does not. For observations that have a positive skew, like the ACE,
the pattern of points on a Q–Q normal plot is concave upward. For observations that
have a negative skew, the pattern of points is concave downward. For values that have
a symmetric distribution but with fatter tails than the normal (e.g., the t-distribution),
the pattern of points resembles an inverse sine function.
The Q–Q normal plot is useful in checking the residuals from a regression model.

The assumption is that the residuals are independent and identically distributed char-
acterized by a from a normal distribution centered on zero. In Chapter 3, you created
a multiple linear regression model for August SST using March SST and year as
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explanatory variables. To examine the assumption of normally distributed residuals
with a Q–Q normal plot, type

> model = lm(Aug ˜ Year + Mar, data=SST)

> qqnorm(model$residuals)

> qqline(model$residuals, col="red")

Points align along the y= x axis indicating a normal distribution.

5.1.5 Scatter Plot

The plot function (method) is used to create a scatter plot. The values of one
variable are plotted against the values of the other variable as points in a Cartesian
plane (see Chapter 2). The values named in the first argument are plotted along the
horizontal axis.
This pairing is useful in generating and testing hypotheses about a relationship

between the two variables. In the context of correlation, which variable gets plotted on
which axis is not of concern. Either way, the scatter of points illustrates the amount of
correlation. However, in the context of a statistical model, by convention, the depen-
dent variable (the variable you are interested in explaining) is plotted on the vertical
axis and the explanatory variable is plotted on the horizontal axis. For example, if your
interest is whether Act is related to pre-hurricane season ocean warmth (e.g., June
SST), your model is

> ace = A$ACE*.5144ˆ2

> sst = SST$Jun

> model = lm(ace ˜ sst)

and you plot ACEon the vertical axis. Since your slope and intercept coefficients from
the linear regression model are saved as part of the object model, you can first create
a scatter plot and then use theabline function to add the linear regression line.Here
the function extracts the intercept and slope coefficient values from the model object
and draws the straight line using the point-intercept formula.
Here you use the model formula syntax (ace ˜ sst) as the first argument in the

plot function.

> plot(ace ˜ sst, ylab=expression(

+ paste("ACE [x", 10ˆ4," ", mˆ2, sˆ-2,"]")),

+ xlab=expression(paste("SST [",degree,"C]")))

> abline(model, col="red", lwd=2)

Figure 5.8 is the result. The relationship between ACE and SST is summarized by the
linear regression model shown by the straight line. The slope of the line indicates that
for every 1◦C increase in SST, the average value of ACE increases by 27×104 m2/s2

(type coef(model[2])).
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Figure 5.8 Scatter
plot and linear
regression line of ACE
and June SST.

Since the regression line is based on a sample of data, you should display it inside a
band of uncertainty. As we saw in Chapter 3, there are two types of uncertainty: a con-
fidence band (narrow) and a prediction band (wide). The confidence band reflects
the uncertainty about the line itself, which like the standard error of the mean indi-
cates the precision by which you know the mean. Here the mean is not constant but
rather a function of the explanatory variable.
The 95 percent confidence band is shown in Figure 5.8. The width of the band is

inversely related to the sample size. In a large sample of data, the confidence bandwill
be narrow reflecting a well-determined line. Note that it is in this case it is impossible
to draw a horizontal line that fits completely within the band.This indicates that there
is a significant relationship between ACE and SST.
The band is narrowest in the middle, which is understood by the fact that the pre-

dicted value at the mean SST will be the mean of ACE, whatever the slope, and thus
the standard error of the predicted value at this point is the standard error of themean
of ACE. At other values of SST, the variability associated with the estimated slope is
included. This variability is larger for values of SST farther from the mean, which is
why the band looks like a bow tie.
The prediction band adds another layer of uncertainty, the uncertainty about future

values of ACE. The prediction band captures the majority of the observed points in
the scatter plot. Unlike the confidence band, thewidth of the prediction banddepends
on the assumption of normally distributed errors with a constant variance across the
values of the explanatory variable.

5.1.6 Conditional Scatter Plot

Scatter plots conditional on the values of a third variable can be quite informative.This
is donewith thecoplot function. The syntax is the same as above except you add the
name of the conditioning variable after a vertical bar.
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For example, as SST increases so does ACE. The conditioning plot answers the
question: is there a change in the relationship depending on values of the third
variable?Here you use August SOI values as the conditioning variable and type

> soi = SOI$Aug

> coplot(ace ˜ sst | soi, panel=panel.smooth)

The syntax is read “conditioning plot of ACE versus SST given values of SOI.” The
function divides the range of the conditioning variable (SOI) into six intervals (by
default)with each interval having approximately the same number of years.The range
of SOI values in each interval overlaps by 50 percent. The conditioning intervals are
plotted in the top panel as horizontal bars (shingles). The plot is shown in Figure 5.9.
The scatter plots of ACE and SST are arranged in a matrix of panels below the

shingles. The panels are arranged from lower left to upper right. The lower left panel
corresponds to the lowest range of SOI values (less than about−1 s.d.) and the upper
right panel corresponds to the highest range of SOI values (greater than about +.5
s.d.). Half of the data points in a panel are shared with the panel to the left and half of
the data points are shared with the panel to the right. This is indicated by the amount
of shingle overlap.
Results show a positive, nearly linear, relationship between ACE and SST for all

ranges of SOI values. Over the SOI range between −1.5 and 0, the relationship is
somewhat curved. ACE is least sensitive to SST when SOI is the most negative (El
Niño years) as indicated by the nearly flat line in the lower left panel. The argument
panel adds a local linear curve (red line) through the set of points in each plot.

5.2 TIME SERIES

Hurricane data often take the form of a time series. A time series is a sequence of data
values measured at successive times and spaced at uniform intervals. You can treat a
time series as a vector and use structured data functions (see Chapter 2) to generate
time series.
However, additional functions are available for data that are converted to time-

series objects. Time series objects are created using the ts function. You do this with
the monthly NAO data frame as follows. First create a matrix of the monthly values,
skipping the year column in the data frame. Second take the transpose of this matrix
(switch the rows with the columns) using the t function and save the matrix as a vec-
tor. Finally, create a time series object, specifying the frequency of values and the start
month. Here the first value is from January 1851.

> nao.m = as.matrix(NAO[, 2:13])

> nao.v = as.vector(t(nao.m))

> nao.ts = ts(nao.v, frequency=12, start=c(1851, 1))

Also create a time series object for the cumulative sum of the monthly SOI values.
The is done with the cumsum function applied to your data vector.
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Figure 5.9 Scatter plots of ACE and SST conditional on the SOI.

> nao.cts = ts(cumsum(nao.v),

+ frequency=12, start=c(1851, 1))

This results in objects of class ts, which is used for time series having numeric time
information. Additional classes for workingwith time series data that can handle dates
and other types of time information are available. For example, the fts package imple-
ments regular and irregular time series based on POSIXct time stamps (see §5.2.3),
and the zoo package provides functions for most time series classes.

5.2.1 Time Series Graph

The objects of class ts make it easy to plot your data as a time series. For instance,
you plot the cumulative sum of theNAO values using the plotmethod. Themethod
recognizes the object as a time series and plots it accordingly eliminating the need to
specify a separate time variable.

> plot(nao.cts)
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Figure 5.10 Time series of the cumulative sum of NAO values.

Figure 5.10 shows the result. The cumulative sum indicates a pattern typical of a
random walk. That is, over the long term there is a tendency for more positive-value
months leading to a “wandering” of the cumulative sum away from the zero line. This
tendency begins to reverse in the late twentieth century.

5.2.2 Autocorrelation

Autocorrelation is correlation between values of a single variable. For time data it,
refers to single series correlated with itself as a function of temporal lag. For spatial
data, it refers to single variable correlated with itself as a function of spatial lag, which
can be a vector of distance and orientation (see Chapter 9). In both cases, the term
“autocorrelation function” is used, but with spatial data, the term is often qualified
with the word “spatial.”
As an example, save 30 random values from a standard normal distribution in a

vector where the elements are considered ordered in time. First, create a time series
object. Then use the lag.plot function to create a scatter plot of the time series
against a lagged copy where the lagged copy starts one time interval earlier.

> t0 = ts(rnorm(30))

> lag.plot(t0, lag=1)

With n values, the plot for lag one contains n− 1 points. The points are plotted using
the text number indicating the temporal order so that the first point labeled “1” is
given by the coordinates (t0[1], t0[2]). The correlation at lag one can be inferred
by the scatter of points. The plot can be repeated for any number of lags, but with
higher lags, the number of points decreases.
You use the autocorrelation function (acf) to quantify the correlation at various

temporal lags. The function accepts univariate and multivariate numeric time series
objects and produces a plot of the autocorrelation values as a function of lag. For
example, to create a plot of the autocorrelation function for the NAO time series
object from the previous section, type
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Figure 5.11 Autocorrelation and partial autocorrelation functions of monthly NAO.

> acf(nao.ts, xlab="Lag [Years]",

+ ylab="Autocorrelation")

The lag values on the horizontal axis are plotted in units of time rather than num-
bers of observations (see Fig. 5.11).Dashed lines are the 95 percent confidence limits.
Here the time series object uses monthly frequency, so the lags are given in fractions
of 12 with 1.0 corresponding to a year.Themaximum lag is calculated as 10× log10 n,
where n is the number of observations. This can be changed using the argument
lag.max.
The lag-zero autocorrelation is fixed at 1 by convention. The nonzero autocorre-

lations are all less than 0.1 in absolute value indicative of an uncorrelated process. By
default, the plot includes 95 percent confidence limits computed as±1.96/

√
n.

The partial autocorrelation function pacf computes the autocorrelation at lag k
after the linear dependencies between lags 1 to k− 1 are removed. The partial auto-
correlation is used to identify the temporal extent of the autocorrelation. Here the
partial autocorrelation vacillates between positive and negative values indicative of a
moving-average process.1

If your regression model uses time series data, it is important to examine the
autocorrelation in the model residuals. If residuals from your regression model have
significant positive autocorrelation, then the assumption of independence is violated.
This violation does not bias the coefficient estimates, but, the standard errors on the
coefficients tend to be too small giving you toomuch confidence in your inferences.

5.2.3 Dates and Times

Various options exist for working with date and time data in R. The as.Date func-
tion gives you flexibility in handling dates through theformat argument. The default

1 A moving-average process is one in which the expectation of the current value of the series is
linearly related to previous white noise (uncorrelated) errors.
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Table 5.1 Format codes for dates.

Code Value

%d Day of the month (decimal number)
%m Month (decimal number)
%b Month (abbreviated, e.g., Jan)
%B Month (full name)
%y Year (2 digit)
%Y Year (4 digit)

format is a four-digit year, a month, then a day, separated by dashes or slashes. For
example, the character string "1992-8-24"will be accepted as a date by typing

> Andrew = as.Date("1992-8-24")

Although the print method displays it as a character string, the object is a Date class
stored as the number of days since January 1, 1970, with negative numbers for earlier
dates.
If your input dates are not in the standard year-month-day order, a format string

can be composed using the elements shown in Table 5.1. For instance, if your date is
specified as August 29, 2005, then you type

> Katrina = as.Date("August 29, 2005",

+ format="%B %d, %Y")

You can find the number of days between hurricanes Andrew and Katrina by
typing

> difftime(Katrina, Andrew, units="days")

Time difference of 4753 days

Or you can obtain the number of days from today since Andrew by typing

> difftime(Sys.Date(), Andrew, units="days")

The function Sys.Datewith no arguments gives the current day in year-month-day
format as a Date object.
The portable operating system interface (POSIX) has formats for dates and times,

with functionality for converting between time zones (Spector, 2008). The POSIX
date/time classes store times to the nearest second. There are two such classes differ-
ing only in theway the values are kept internally.ThePOSIXct class stores date/time
values as the number of seconds since January 1, 1970, while thePOSIXlt class stores
them as a list. The list contains elements for second, minute, hour, day, month, and
year among others.
The default input format for POSIX dates consists of the year, month, and day,

separated by slashes or dashes with time information followed after a space. The
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time information is in the format hour:minutes:seconds or simply hour:minutes.
For example, according to the U.S. National Hurricane Center, Hurricane Andrew
hit Homestead Air Force Base at 0905 UTC on August 24, 1992. You add time
information to your Andrew date object and convert it to a POSIXct object by
typing.

> Andrew = as.POSIXct(paste(Andrew, "09:05"),

+ tz="GMT")

You then retrieve your local time from your operating system as a character string and
use the date–time conversion strptime function to convert the string to a POSIXlt
class.

> mytime = strptime(Sys.time(), format=

+ "%Y-%m-%d %H:%M:%S", tz="EST5EDT")

Our time zone is U.S. Eastern standard time, so we use tz="EST5EDT". You then
find the number of hours since Andrew’s landfall by typing,

> difftime(mytime, Andrew, units="hours")

Time difference of 171482 hours

Note that time zones are not portable, but EST5EDT comes pretty close.
Additional functionality for working with times is available in the chron and lubri-

date packages. In particular, lubridate (great package name) makes it easy to work
with dates and times by providing functions to identify and parse date–time data,
extract and modify components (years, months, days, hours, minutes, and seconds),
perform math on date–times, and handle time zones and Daylight Savings Time
(Grolemund andWickham, 2011).
For example, to return the day of the week from your object Andrew, you use the

wday function in the package by typing

> require(lubridate)

> wday(Andrew, label=TRUE, abbr=FALSE)

[1] Monday

7 Levels: Sunday < Monday < ... < Saturday

If you lived in south Florida, what aMonday it was. Other examples of useful functions
in the package related to the Andrew time object include, the year, was it a leap year,
what week of the year was it, and what local time was it. Finally, what is the current
time in Chicago?

> year(Andrew)

> leap_year(Andrew)

> week(Andrew)

> with_tz(Andrew,tz="America/New_york")

> now(tz="America/Chicago")
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5.3 MAPS

A great pleasure in working with graphs is the chance to visualize patterns. Maps
are among the most compelling graphs as the space they map is the space in which
hurricanes occur. We can use them to find interesting, sometimes hidden. Various
packages are available for creating maps. Here we look at a few examples.

5.3.1 Boundaries

Sometimes all you need is a reference map to show your study location. This can be
created using state and country boundaries. For example, the maps package is used
to draw country and state borders. To draw a map of the United States with state
boundaries, type

> require(maps)

> map("state")

The call to map creates the country outline and adds the state boundaries. Themap is
shown in Figure 5.12. The package contains outlines for countries around the world
(e.g., type map()).
The coordinate system is latitude and longitude, so you can overlay other spatial

data. As an example, first input the track of Hurricane Ivan (2004) as it approached
the U.S. Gulf coast. Then list the first six rows of data.

> Ivan = read.table("Ivan.txt", header=TRUE)

> head(Ivan)

Year Mo Da Hr Lon Lat Wind WindS Pmin Rmw Hb

1 2004 9 15 8 -87.6 25.9 118 118 917 37 1.27

2 2004 9 15 9 -87.7 26.1 118 117 917 37 1.27

3 2004 9 15 10 -87.7 26.3 117 116 917 37 1.26

4 2004 9 15 11 -87.8 26.5 117 116 918 37 1.26

Figure 5.12 Map with state boundaries.
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5 2004 9 15 12 -87.9 26.7 117 115 918 37 1.26

6 2004 9 15 13 -88.0 26.9 116 115 919 37 1.26

Speed L Lhr

1 11.6 0 -24

2 12.1 0 -23

3 12.4 0 -22

4 12.6 0 -21

5 12.7 0 -20

6 12.8 0 -19

Amongother attributes, the data frameIvan contains the latitude and longitude posi-
tion of the hurricane center every hour from 24 hours before landfall until 12 hours
after landfall.
Here your geographic domain is the southeast, so first create a character vector of

state names.

> cs = c('texas', 'louisiana', 'mississippi',
+ 'alabama', 'florida', 'georgia', 'south carolina')

Next use the map function with this list to plot the state boundaries and fill the state
polygons with a gray shade. Finally, connect the hourly location points with the
lines function and add an arrowhead to the last two locations.

> map("state", region=cs, boundary=FALSE, col="gray",

+ fill=TRUE)

> Lo = Ivan$Lon

> La = Ivan$Lat

> n = length(Lo)

> lines(Lo, La, lwd=2.5, col="red")

> arrows(Lo[n - 1], La[n - 1], Lo[n], La[n], lwd=2.5,

+ length=.1, col="red")

The result is shown in Figure 5.13.Hurricane Ivanmoves northward from the central
Gulf of Mexico and makes landfall in the western panhandle region of Florida before
moving into southeastern Alabama.
The scale of the map is defined as the ratio of the map distance in a particular

unit (e.g., centimeters) to the actual distance in the same unit. Small scale describes
maps of large regions where this ratio is small and large scale describes maps of small
regions where the ratio is larger. The boundary data in themaps package is sufficient
for use with small-scale maps but the number of boundary points is not sufficient for
large-scale maps (close-up or high resolution). Higher-resolution boundary data are
available in themapdata package.
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Figure 5.13 Track of Hurricane Ivan (2004) before and after landfall.

5.3.2 Data Types

The type of map you make will depend on the type of spatial date you have. Broadly
speaking, there are three types of: point, areal, and field data. Point data are event
locations. Any location in a continuous spatial domain may have an event. The events
may carry additional information, called “marks.” Interest centers on the distribution
of events and on whether there are event clusters. The set of all locations where hur-
ricanes first reached maximum intensity is an example of point data. The events are
the location of the hurricane at maximum intensity, and a mark is the corresponding
wind speed.
Areal data are valves aggregated within fixed polygons. The set of polygons form

a lattice so a real data are called “lattice data.” Interest centers on how the values
change across the domain and on howmuch correlation exists within neighborhoods
defined by contiguity or distance. County-wide population is an example of areal data.
The values may be the number of people living in the county or a population density
indicating the average number of people per area.
Field data are observations of a spatially continuous variable, like pressure or tem-

perature. The values are given at certain locations and the interest centers on using
these values to create a continuous surface from which inferences can be made at any
location. Sea-level pressure is an example of field data.

Point Data

Consider the set of events defined by the location at which a hurricane first reaches
lifetimemaximum intensity. The data are available in the file LMI.txt and are input by
typing

> LMI.df = read.table("LMI.txt", header=TRUE)

> LMI.df$WmaxS = LMI.df$WmaxS * .5144

> head(LMI.df[, c(4:10, 11)])

name Yr Mo Da hr lon lat Wmax

30861.5 DENNIS 1981 8 20 23 -70.8 37.0 70.4
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30891.4 EMILY 1981 9 6 10 -58.1 40.6 80.6

30930.2 FLOYD 1981 9 7 2 -69.1 26.8 100.4

30972.2 GERT 1981 9 11 14 -71.7 29.4 90.5

31003.5 HARVEY 1981 9 14 23 -62.6 28.3 115.1

31054.4 IRENE 1981 9 28 16 -56.4 27.9 105.5

The Wmax column is a spline-interpolated maximum wind speed and WmaxS (not
shown) is first smoothed then spline interpolated to allow time derivatives to be com-
puted. Chapter 6 provides more details and explains how this data set is constructed.
The raw wind speed values are given in 5-kt increments. Although knots (kt) are

the operational unit used for reporting tropical cyclone intensity to the public in the
United States, here you use the SI units ofm s−1.We use the term “intensity” as short-
hand for “maximumwind speed,” wheremaximumwind speed refers to the estimated
fastest wind velocity somewhere in the core of the hurricane. Lifetime maximum
refers to the fastest wind during the life of the hurricane.
You draw a map of the event locations with the plotmethod using the longitude

coordinate as the x variable and the latitude coordinate as the y variable by typing

> with(LMI.df, plot(lon, lat, pch=19))

> map("world", col="gray", add=TRUE)

> grid()

Adding country borders and latitude/longitude grid lines (grid function) enhances
the geographic information. The argument pch specifies a point character using an
integer code. Here 19 refers to a solid circle (type ?points for more information).
Thewith function allows you use the column names from the data frame in theplot
method.
Note the order of function calls. By plotting the events first, then adding the coun-

try borders, the borders are clipped to the plot window. The dimensions of the plot
window are slightly larger than the range of the longitude and latitude coordinates.
The function chooses a reasonable number of axis tics that are placed along the range
of coordinate values at reasonable intervals.
Since the events are marked by storm intensity, it is informative to add this infor-

mation to the map. Hurricane intensity, as indexed by an estimate of the wind speed
maximum, is a continuous variable. You can choose a set of discrete intensity intervals
and group the events by these class intervals. For example, you might want to choose
the Saffir–Simpson hurricane intensity scale.
To efficiently communicate differences in intensities with colors, you should limit

the number classes to six or less. The package classInt is a collection of functions
for choosing class intervals. Here you require the package and create a vector of
lifetime maxima. You then obtain class boundaries using the classIntervals
function. Here the number of class intervals is set to five and the method of determin-
ing the interval breaks is based on Jenks optimization (style="jenks"). Given the
number of classes, the optimization minimizes the variance of the values within the
intervals while maximizing the variance between the intervals.
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> require(classInt)

> lmi = LMI.df$WmaxS

> q5 = classIntervals(lmi, n=5, style="jenks",

+ dataPrecision=1)

The dataPrecision argument sets the number of digits to the right of the decimal
place.
Next you choose a palette of colors. This is best left to someone with an under-

standing of hues and color separation schemes. The palettes described and printed in
Brewer et al., (2003) for continuous, diverging, and categorical variables can be exam-
ined on maps at http://colorbrewer2.org/. Select the HEX radio button for
a color palette of your choice and then copy and paste the hex code into a character
vector preceded by the pound symbol.
For example, here you create a character vector (cls) of length 5 containing the

hex codes from the color brewer web site from a sequential color ramp ranging among
yellow, orange, and red.

> cls = c("#FFFFB2", "#FECC5C", "#FD8D3C", "#F03B20",

+ "#BD0026")

To use your own set of colors, simply modify this list. A character vector of color
hex codes is generated automatically with functions in the colorRamps package (see
Chapter 9).
The empirical cumulative distribution function of cyclone intensities with the

corresponding class intervals and colors is plotted by typing

> plot(q5, pal=cls, main="", xlab=

+ expression(paste("Wind Speed [m ", sˆ-1,"]")),

+ ylab="Cumulative Frequency")

The graph is shown in Figure 5.14. The points (with horizontal dashes) are the life-
time maximum intensities in rank order from lowest to highest. You can see that half
of all hurricanes have lifetime intensities greater than 46m s−1.
Once you are satisfied with the class intervals and color palette, you can plot the

events on amap. First you need to assign a color for each event depending on its wind
speed value. This is done with the findColours function as

> q5c = findColours(q5, cls)

Now, instead of black dots with a color bar, each value is assigned a color correspond-
ing to the class interval. For convenience, you create the axis labels and save them as
expression objects. You do this with the expression and paste functions to get
the degree symbol.

> xl = expression(paste("Longitude [",{}ˆo,"E]"))

> yl = expression(paste("Latitude [",{}ˆo,"N]"))
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Since the degree symbol is not attached to a character, you use {} in front of the
superscript symbol. You again use the plotmethod on the location coordinates, but
this time set the color argument to the corresponding vector of colors saved in q5c.

> plot(LMI.df$lon, LMI.df$lat, xlab=xl, ylab=yl,

+ col=q5c, pch=19)

> points(LMI.df$lon, LMI.df$lat)

To improve the map, you add country boundaries, place axis labels in the top and
right margins, and add a coordinate grid.

> map("world", add=TRUE)

> axis(3)

> axis(4)

> grid()

To complete the map, you add a legend by typing

> legend("bottomright", bg="white",

+ fill=attr(q5c, "palette"),

+ legend=names(attr(q5c, "table")),

+ title=expression(paste("Wind Speed [m "

+ , sˆ-1, "]")))

Note that fill colors and names for the legend are obtained using the attr function
on the q5c object. The function retrieves the table attribute of the object. The result
is shown in Figure 5.15. Colors indicate the wind speed in five classes as described in
Figure 5.14.
The spatial distribution of lifetimemaxima is fairly uniform over the ocean for loca-

tionswest of the−40◦E longitude. Fewer events are noted over the easternCaribbean
Sea and southwestern Gulf of Mexico. Events over the western Caribbean tend to
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Figure 5.15 Location of lifetime maximum wind speed.

have the highest intensities. Also there is a tendency for hurricanes reaching lifetime
maxim at lower latitudes to have higher intensities.

Areal Data

A shapefile stores geometry and attribute information for spatial data. The geome-
try is a set of vector coordinates. Shapefiles support point, line, and area data. Area
data are represented as closed-loop polygons. Each attribute record has a one-to-one
relationship with the associated shape record. For example, a shapefile might consist
of the set of polygons for the counties in Florida and an attribute might be popu-
lation. Associated with each county, population record (attribute) is an associated
shape record.
The shapefile is actually a set of several files in a directory. The three files with

extensions *.shp (file of geometries), *.shx (index file to the geometries), and
*.dbf (file for storing attribute data) form the core of the directory. Note that there
is no standard for specifying missing attribute values. The *.prj file, if present,
contains the coordinate reference system (CRS; see §5.4).
Information in a shapefile formatmakes it easy tomap.As an example, consider the

U.S. Census Bureau boundary file for the state of Florida http://www.census.
gov/cgi-bin/geo/shapefiles/national-files. Browse to Current State
and Equivalent, Select State, then Florida. Download the zipped file. Unzip it to your
R working directory. To make things a bit easier for typing, rename the directory and
the shapefiles to FL.
The readShapeSpatial function from the maptools package reads in the

polygon shapefile consisting of the boundaries of the 67 Florida counties.

> require(maptools)

> FLpoly = readShapeSpatial("FL/FL")

> class(FLpoly)
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[1] "SpatialPolygonsDataFrame"

attr(,"package")

[1] "sp"

Note the shapefiles are in directory FL with file names the same as the directory
name. The object FLpoly too created is a SpatialPolygonsDataFrame class. It
extends the class data.frame by adding geographic information (see Bivand et al.
(2008)).
You can use the plot method to produce a map of the polygon borders. More

interestingly is a map displaying an attribute of the polygons. For instance, demo-
graphic data at the county level are important for emergencymanagers. First read in a
table of the percentage change in population over the 10-year period 2000–2010.

> FLPop = read.table("FLPop.txt", header=TRUE)

> names(FLPop)

[1] "Order" "County" "Pop2010" "Pop2000" "Diff"

[6] "Change"

Here the table rows are arranged in the same order as the polygons. You assign the
column Change to the data slot of the spatial data frame by typing

> FLpoly$Change = FLPop$Change

Then use the function spplot to create a choropleth map of the attribute Change.

> spplot(FLpoly, "Change")

Results are shown in Figure 5.16. With the exception of Monroe and Pinellas coun-
ties, population throughout the state increased over this period. Largest population
increases are noted over portions of north Florida.
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The spplotmethod is available in the sp package. It is an example of a lattice plot
method (Sarkar, 2008) for spatial data with attributes. The function returns a plot of
class trellis. If the function does not automatically bring up your graphics device,
you need to wrap it in the print function. Missing values in the attributes are not
allowed.

Field Data

Climate data are often presented as valves on a grid. For example, NOAA-CIRES
20th Century Reanalysis version 2 provides monthly sea-surface temperatures at
latitude–longitude intersections. A portion of these data are available in the file
JulySST2005.txt. The data are the SST values on a 2◦ latitude–longitude grid for the
month of July 2005. The grid is bounded by −100◦ and 10◦E longitudes and the
equator and 70◦N latitude.
First input the data and convert the column of SST values to a matrix using the

matrix function specifying the number of columns as the number of longitudes.
The number of rows is inferred based on the length of the vector. Next create two
structured vectors, one of the meridians and the other of the parallels using the seq
function. Specify the geographic limits and an interval of 2◦ in both directions.

> sst.df = read.table("JulySST2005.txt", header=TRUE)

> sst = matrix(sst.df$SST, ncol=36)

> lo = seq(-100, 10, 2)

> la = seq(0, 70, 2)

To create a map of the SST field, first choose a set of colors. Since the values rep-
resent temperature, you want the colors to go from blue (cool) to red (warm). R pro-
vides a number of color palettes including rainbow, heat.colors, cm.colors,
topo.colors, grey.colors, and terrain.colors. The palettes are func-
tions that generate a sequence of color codes interpolated between two or more
colors. The cm.colors is the default palette in sp.plot and the colors diverge
from white to cyan andmagenta.
More color options from the Web site are given in §5.3.2. The package RColor-

Brewer provides the palettes described in Brewer et al. (2003). Palettes are available
for continuous, diverging, and categorical variables and for choices of print and screen
projection. The sp package has the bpy.colors function that produces a range of
colors from blue to yellow that work for color and black-and-white print. You can
create your own palette using the colorRampPalette function. Here you save the
function as bwr and use a set of three colors. The number of colors to interpolate is
the argument to the bwr function.

> bwr = colorRampPalette(c("blue", "white", "red"))

The image function creates a grid of rectangles with colors corresponding to the
values in the third argument as specified by the palette and the number of colors set
here at 20. The first two arguments correspond to the two-dimensional location of the
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rectangles. The x and y labels use the expression and paste functions to get the
degree symbol. You add country boundaries and place axis labels in the top and right
margins (margins 3 and 4 to complete the graph).

> image(lo, la, sst, col=bwr(20), xlab=xl, ylab=yl)

> map("world", add=TRUE)

> axis(3)

> axis(4)

Note that image interprets the matrix of SST values as a table with the x-axis corre-
sponding to the row number and the y-axis to the column number, with column one
at the bottom. This is an orthogonal counterclockwise rotation of the conventional
matrix layout.
Overlay a contour plot of the SST data using the contour function. First deter-

mine the range of the SST values and round to the nearest whole integer. There are
missing values (over land) so you need to use the na.rm argument in the range
function.

> r = round(range(sst, na.rm=TRUE))

Next create a string of temperature values at equal intervals within this range. Con-
tours will be drawn at these values.

> levs = seq(r[1], r[2], 2)

> levs

[1] -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

[17] 30

Then paste the character string “C” onto the interval labels. The corresponding list is
used as contour labels.

> cl = paste(levs, "C")

> contour(lo, la, sst, levels=levs, labels=cl,

+ add=TRUE)

The result is shown in Figure 5.17. Ocean temperatures above about 28◦C are
warm enough to support the development of hurricanes. This covers a large area
from the west coast of Africa westward through the Caribbean and Gulf of Mexico
and northward toward Bermuda.

5.4 COORDINATE REFERENCE SYSTEMS

For data covering a large geographic area,you need amapwith a projected coordinate
reference system (CRS). A geographic CRS includes a model for the shape of the
earth (oblate spheroid) plus latitudes and longitudes. Longitudes and latitudes can
be used to create a two-dimensional coordinate system for plotting hurricane data,
but this framework is for a sphere and not a flat map.
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Figure 5.17 Sea-surface temperature field from July 2005.

A projected CRS is a two-dimensional approximation of the earth as a flat surface.
It includes a model for the earth’s shape plus a specific geometric model for project-
ing coordinates onto the plane. The PROJ.4 Cartographic Projections library uses
a tab = value representation of a CRS, with a tag and value pair within a single
character string. TheGeospatial Data Abstraction Library (GDAL) contains code for
translating between different CRSs. Both the PROJ.4 and GDAL libraries are avail-
able in the rgdal package (Keitt et al., 2012). Here you specify a geographic CRS and
save it in a CRS object called ll_crs (lat-lon coordinate reference system).

> require(rgdal)

> require(mapdata)

> ll_crs = CRS("+proj=longlat +ellps=WGS84")

The only values used autonomously in CRS objects are whether the string is a charac-
ter NA (missing) for an unknown CRS, and whether it contains the string longlat,
in which case the CRS is geographic (Bivand et al., 2008).
There are a number of different tags, beginning with “+”, and separated from the

value with “=”, using white space to separate the tag/value pairs. Here you specify
the earth’s shape using the World Geodetic System (WGS) 1984, which is the refer-
ence coordinate systemusedby theGlobal Positioning System to reference the earth’s
center of mass.
As an example, you create aSpatialPointsobject calledLMI_llby combining

the matrix of event coordinates (location of lifetime maximum intensity) in native
longitude and latitude degrees with the CRS object defined above.

> LMI_mat = cbind(LMI.df$lon, LMI.df$lat)

> LMI_ll = SpatialPoints(LMI_mat,

+ proj4string=ll_crs)

> summary(LMI_ll)

Object of class SpatialPoints

Coordinates:



Elsner: “05˙ELSNER˙CH05” — 2012/9/24 — 19:08 — page 125 — #28

125 Coordinate Reference Systems

min max

coords.x1 -97.1 -6.87

coords.x2 11.9 48.05

Is projected: FALSE

proj4string : [+proj=longlat +ellps=WGS84]

Number of points: 173

Here you are interested in transforming the geographic CRS into a Lambert con-
formal conic (LCC) planar projection. The projection superimposes a cone over the
earth, with two reference parallels secant to the globe. The LCC projection is used
for aeronautical charts. It is used by the U.S. NHC in their seasonal summary maps.
Other projections, ellipsoids, and datum are available, and a list of the various tag
options can be generated by typing

> projInfo(type = "proj")

Besides the projection tag (lcc), you need to specify the two secant parallels and
a meridian. The NHC summary maps use the parallels 30 and 60◦N and a meridian
of 60◦W. First save the CRS as a character string, then use the spTransform func-
tion to transform the latitude–longitude coordinates to coordinates of an LCC planar
projection.

> lcc_crs = CRS("+proj=lcc +lat_1=60 +lat_2=30

+ +lon_0=-60")

> LMI_lcc = spTransform(LMI_ll, lcc_crs)

This transforms the original set of longitude–latitude coordinates to a set of pro-
jected coordinates. You need to repeat this transformation for each of the map
components. For instance, to transform the country borders, first save them from a
call to the map function. The function includes arguments to specify a longitude–
latitude bounding box. Second, convert the returned map object to a spatial lines
object with the map2SpatialLines function using a geographic CRS. Finally,
transform the coordinates of the spatial lines object to the LCC coordinates.

> brd = map('world', xlim=c(-100, 0), ylim=c(5, 50),

+ interior=FALSE, plot=FALSE)

> brd_ll = map2SpatialLines(brd, proj4string=ll_crs)

> brd_lcc = spTransform(brd_ll, lcc_crs)

To include longitude–latitude grid lines, you use the gridlines function on the
longitude–latitude borders and then transform them to LCC coordinates. Similarly,
to include grid labels, you convert the locations in longitude–latitude space to LCC
space.

> grd_ll = gridlines(brd_ll)

> grd_lcc = spTransform(grd_ll, lcc_crs)

> at_ll = gridat(brd_ll)

> at_lcc = spTransform(at_ll, lcc_crs)

jelsner
Sticky Note
change "an" to "the"



Elsner: “05˙ELSNER˙CH05” — 2012/9/24 — 19:08 — page 126 — #29

126 Graphs andMaps

100°W

80°W
60°W

40°W

20°W

0°
10°N

20°N

30°N

40°N

50°N

Figure 5.18 Lifetime maximum intensity events on a Lambert conic conformal map.

Finally, to plot the events on a projected map, first plot the grid and then add the
country borders and event locations. Use the text function to add grid labels and
include a box around the plot.

> plot(grd_lcc, col="grey60", lty="dotted")

> plot(brd_lcc, col="grey60", add=TRUE)

> plot(LMI_lcc, pch=19, add=TRUE, cex=.7)

> text(coordinates(at_lcc), pos=at_lcc$pos,

+ offset=at_lcc$offset-.3, labels=

+ parse(text=as.character(at_lcc$labels)),

+ cex=.6)

The result is shown in Figure 5.18. Conformal maps preserve angles and shapes of
small figures, but not size. The size distortion is zero at the two reference latitudes.
These features are useful for hurricane tracking maps.
Thespplotmethod for points, lines, andpolygons has advantages over successive

calls to plot. Chapter 9 contains a examples.

5.5 EXPORT

The rgdal package has drivers for reading and writing spatial vector data using the
OGR2 Simple Features Librarymodeled on the OpenGIS simple features datamodel
supported by the Open Geospatial Consortium, Inc.�. If the data have a CRS, it will
be read and written. The availability of OGR drivers depends on your computer. To
get a list of the drivers available type ogrDrivers().

2 Historically, OGR was an abbreviation for “OpenGIS Simple Features Reference Implementa-
tion.” However, since OGR is not fully compliant with the OpenGIS Simple Feature specification
and is not approved as a reference implementation, the name was changed to “OGR Simple Fea-
tures Library.” “OGR is the prefix used everywhere in the library source for class names, filenames,
and so on.
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Here you consider two examples. First export the lifetime maximum intensity
events as a KeyholeMarkup Language (KML) for overlay using Google EarthTM and
then export the events as an ESRITM shapefile suitable for input into ArcMap�, the
main component of ESRITM’s Geographic Information System (GIS).
First create a spatial points data frame from the spatial points object. This is

done using the SpatialPointsDataFrame function. The first argument is the
coordinates of the spatial points object. The underlying CRS for Google EarthTM is
geographical in theWGS84 datum, so you use the LMI_ll object defined above and
specify the argument proj4string as the character string ll_crs, also defined
earlier.

> LMI_sdf = SpatialPointsDataFrame(coordinates(LMI_ll),

+ proj4string=ll_crs, data=as(LMI.df, "data.frame")

+ [c("WmaxS")])

> class(LMI_sdf)

[1] "SpatialPointsDataFrame"

attr(,"package")

[1] "sp"

The resulting spatial points data frame (LMI_sdf) contains a data slot with a sin-
gle variable WmaxS from the LMI.df data frame, which was specified by the data
argument.
To display the structure of the object, type

> str(LMI_sdf, max.level=3)

The argument max.level specifies the level of nesting (e.g., lists containing sub
lists). By default, all nesting levels are shown, and this can produce too much output
for spatial objects. Note that there are five slots with names data, coords.nrs,
coords, bbox, and proj4string. The data slot is a regular data from, here
containing a single variable.
The writeOGR function takes as input the spatial data frame object and the name

of the data layer and outputs a file in your working directory with a name given by the
dsn argument and in a format given by the driver argument.

> writeOGR(LMI_sdf, layer="WmaxS", dsn="LMI.kml",

+ driver="KML", overwrite_layer=TRUE)

The resulting file can be viewed in Google EarthTM with pushpins for event locations.
The pins can be selected revealing the layer values. You will see how to create an
overlay image in Chapter 9.
You can also export to a shapefile. First transform your spatial data frame into the

Lambert conformal conic used by the NHC.

> LMI_sdf2 = spTransform(LMI_sdf, lcc_crs)

> str(LMI_sdf2, max.level=2)
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Note that the coordinate values are not longitude and latitude and neither are the
dimensions of the bounding box (bbox slot).
You export using the driver ESRI Shapefile. The argument dsn is a folder

name.

> drv = "ESRI Shapefile"

> writeOGR(LMI_sdf2, layer="WmaxS", dsn="WmaxS",

+ driver=drv, overwrite_layer=TRUE)

The output contains a set of four files in the Wmax folder including a .prj file with
the fully specified CRS. The data can be imported as a layer to ArcMap�.

5.6 OTHER GRAPHIC PACKAGES

R’s traditional (standard) graphics offer a nice set of tools for making statistical plots
including box plots, histograms, and scatter plots. The plot are produced using a sin-
gle function. Yet some plots require a lot of work and even simple changes can be
tedious. This is particularly true when you want to make a series of related plots for
different partitions of your data. Two alternatives to the standard graphics are worth
mentioning.

5.6.1 lattice

The lattice package (Sarkar, 2008) contains functions for creating trellis graphs for
a variety of plot types. A trellis graph displays a variable or the relationship between
variables, conditioned on another variable(s).
In simple usage, lattice functions work like traditional graphics functions. As an

example of a lattice graphic function that produces a density plot of the June NAO
values, type

> require(lattice)

> densityplot(˜ Jun, data=NAO)

The function’s syntax includes the name of the variable and the name of the data
frame. The variable is preceded by the tilde symbol. By default, the density plot
includes the values as points jittered above the horizontal axis.
The power of trellis graphs comes from being able to easily create a series of plots

with the same axes (trellis) as you did with the coplot function in §5.1.6. For
instance, in an exploratory analysis, you might want to see if the annual U.S. hurri-
cane count is related to the NAO. You first create a variable that splits the NAO into
four groups.

> steer = equal.count(NAO$Jun, number=4, overlap=.1)

The grouping variable has class shingle and the number of years in each group is
the same. The overlap argument indicates the fraction of overlap in the data used
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to group the years. If you want to leave gaps, you specify a negative fraction. You can
type plot(steer) to see the range of values for each group.
Next you use the histogram function to plot the percentage of hurricanes by

count conditional on your grouping variable.

> histogram(˜ US$All | steer, breaks=seq(0, 8))

The vertical line indicates that the conditioning variable follows. The breaks argu-
ment is used on the hurricane counts. The resulting four-panel graph is arranged from
lower left to upper right with increasing values of the grouping variable. Each panel
contains a histogram of U.S. hurricane counts drawn using an identical scale for the
corresponding range of NAO values. The relative range is shown above each panel in
a strip (shingle).
Lattice functions produce an object of class trellis that contains a description

of the plot. First assign it to the object dplot then print it. The printmethod for objects
of this class does the actual drawing of the plot. For example, the following code does
the same as shown previously.

> dplot = densityplot(˜Jun, data=NAO)

> print(dplot)

Now you can use the update function tomodify the plot design. For example, to add
an axis label, type

> update(dplot, xlab="June NAO (s.d.)")

To save the modified plot for additional changes, you need to reassign it.

5.6.2 ggplot2

The ggplot2 package (Wickham, 2009) contains plotting functions that are more
flexible than the traditional R graphics. The gg stands for the “Grammar of Graph-
ics,” a theory of how to create a graphics system (Wilkinson, 2005). The grammar
specifies how a graphic maps data to attributes of geometric objects. The attributes
are things like color, shape, and size, and the geometric objects are things like points,
lines, bars, and polygons.
The plot is drawn on a specific coordinate system (which can be geographic) and it

may contain statistical manipulations of the data. Faceting can be used to replicate the
plot using subsets of your data. Here we give a few examples to help you get started.
Returning to your October SOI values. To create a histogram with a bin width of

one standard deviation (units of SOI), type

> require(ggplot2)

> qplot(Oct, data=SOI, geom="histogram", binwidth=1)

The geom argument (short for geometric object) represents what you see on the plot,
here a histogram. The default geometric objects are points and lines.
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Figure 5.19 Histograms of October SOI.
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Figure 5.20 Scatter plots of August and September SOI.

Figure 5.19 shows histograms of the October SOI for two different bin widths.
Note the use of grids and a background gray shade. This can be changed with the
theme_set function.
You create a scatter plot using the same qplot function and in the same way as

plot. Here you specify the data with an argument. The default geometric object in
this case is the point.

> qplot(Aug, Sep, data=SOI)

You add a smoothing function (an example of a statistical manipulation of your data)
with smooth as a character string in the geom argument.

> qplot(Aug, Sep, data=SOI, geom=c("point", "smooth"))

The default method for smoothing is local regression. You can change this to a linear
regression by specifying method="lm". Scatter plots with both types of smoothers
are shown in Figure 5.20. The graph on the left uses the default local smoothing and
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the graph on the right uses a linear regression. The geom plots the points and adds a
best-fit line through them. The line is drawn by connecting predictions of the best-fit
model at a set of equally spaced values of the explanatory variable (here August SOI)
over the range of data values. A 95 percent confidence band about the prediction line
is included.
Plots are built layer by layer. Layers are regular R objects and so can be stored as

variables. This makes it easy for you to write clean code with a minimal amount of
duplication. For instance, a set of plots can be enhanced by adding new data as a
separate layer. As an example, here is code to produce the left plot in Figure 5.20.

> bestfit = geom_smooth(method="lm", color='red')
> pts = qplot(Aug, Sep, data=SOI)

> pts + bestfit

The bestfit layer is created and saved as a geom object and the pts layer is cre-
ated from the qplot function. The two layers are added and then rendered to your
graphics device in the third line of code.
Finally, consider again the NAO time series object you created in §5.2. You create

a vector of times at which the series was sampled using the times function. Here you
use the line geom instead of the default point.

> tm = time(nao.ts)

> qplot(tm, nao.ts, geom="line")

Results are shown in Figure 5.21. The values fluctuate widely from one
month to the next, but there is no long-term trend. A local regression smoother
(geom_smooth) using a span of 10 percent of the data indicates a tendency for a
greater number of negative NAO values since the start of the twenty-first century.
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Figure 5.21 Time series of the monthly NAO. The red line is a local smoother.
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As with the plot function, the first two arguments to qplot are the ordinate and
abscissa data vectors, but you can use the optional argument data to specify column
names in a data frame. The ggplot function, which allows even greater flexibility,
accepts only data frames. Functions in plyr and reshape packages help you create
data frames from other data objects (Teetor, 2011).

5.6.3 ggmap

The ggmap package (Kahle andWickham, 2012) extends the grammar of graphics to
maps. The functionggmap queries theGoogleMaps server orOpenStreetMap server
for a map at a specified location and zoom. For example, to grab amap of Tallahassee,
Florida, type

> require(ggmap)

> Tally = ggmap(location = "Tallahassee", zoom=13)

> str(Tally)

The result is an object of class ggmap with a matrix (640× 640) of character strings
specifying the fill color for each raster.
The level of zoom ranges from 0 for the entire world to 19 for the individual city

blocks highest. The default zoom is 10. The default map type (maptype) is terrain
with options for “roadmap”, “mobile”, “hybrid”, among others. To plot the map on
your graphics device, type

> ggmapplot(Tally)

To determine a center for your map, you use the geocode function to get a
location. For example, to determine the location of Florida State University, type.

> geocode("Florida State University")

This chapter showed you how to produce graphs and maps with R. A good graph
helps you understand your data and communicate your results. We began by looking
at how to make bar charts, histograms, density plots, scatter plots, and graphs involv-
ing time. We then looked at utilities for drawingmaps and described the various types
of spatial data.We showed you how to create coordinate reference systems and trans-
form between them. We also showed you how to export your graphs and maps. We
ended by taking a look at two additional graphics systems within R. You will get more
practice with these tools as you work through the book.
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