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4
BAYESIAN STATISTICS

“Probability does not exist.”
—Bruno de Finetti

Classical statistics involves ways to test hypotheses and estimate confidence intervals.
Bayesian statistics involves methods to calculate probabilities associated with your
hypotheses. The result is a posterior distribution that combines information from
your data with prior beliefs. The term “Bayesian” comes from Bayes’s theorem—a
single formula for obtaining the posterior distribution. It is the cornerstone ofmodern
statistical methods.
In this chapter we introduce Bayesian statistics. We begin by considering the prob-

lem of learning about the population proportion (percentage) of all hurricanes that
make landfall. We then consider the problem of estimating how many days it takes
your manuscript to get accepted for publication. Again, we encourage you to follow
along by typing the code into your R console.

4.1 LEARNING ABOUT THE PROPORTION
OF LANDFALLS

Models that have skill at forecasting hurricane courts can be made relevant to society
if they include an estimate of the proportion of those that make landfall. Before exam-
ining the data, you hold a belief about the value of this proportion. You model your
belief in terms of a prior distribution. Then after examining some data, you update
your belief about the proportion by computing the posterior distribution (Albert,
2009).
This setting allows you to predict the likely outcomes of a new sample taken from

the population, for example, the proportion of landfalls for next year. The use of the
pronoun “you” focuses attention on the Bayesian viewpoint that probabilities, do not
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exist but are how much you personally believe that something is true. Said another
way, probabilities are subjective and based on all the relevant information available
to you.
Here you think of a population consisting of past and future hurricanes in the

North Atlantic. Then let π represent the proportion of this population that hit the
United States at hurricane intensity. The value ofπ is unknown. You are interested in
learning about what the value of π could be.
Bayesian statistics requires that you represent your belief about the uncertainty in

this percentage with a probability distribution. The distribution reflects your sub-
jective prior opinion about plausible values of π . Before you examine a sample of
hurricanes, you think about what the value of π might be. If all hurricanes make land-
fall π is one, and if none make landfall π is zero. This is the nature of proportions,
bounded below by zero and above by one. Also while the court of hurricanes is an
integer the percentage that make landfall is a real number.
As a climatologist you are also aware that not all hurricanes make it to land. The

nature of percentages together with your background provides you with information
about π that is called “your prior.” From this information, suppose you believe that
the percentage of hurricanes making landfall in the United States is equally likely to
be smaller or larger than 0.3. Moreover, suppose you are 90 percent confident that π
is less than 0.5.
A convenient family of densities for a proportion is the beta. The beta density,

here representing your prior belief about the population percentage of all hurricanes
making landfallπ , is proportional to

g(π)∝ π a−1(1−π)b−1 (4.1)

where the parameters a and b are chosen to reflect your prior beliefs about π .
Themean of a beta density ism= a/(a+b) and the variance is v=m(1−m)/(a+

b+1). Unfortunately, it is difficult to assess values of m and v for distributions like the
beta that are not symmetric. It is easier to obtain a and b indirectly through statements
about the percentiles of the distribution. Recall from before you have a belief about
the median (.3) and the 90th percentile (.5).
The beta.select function in the LearnBayes package (Albert, 2011) is use-

ful for finding the two parameters (shape and scale) of the beta density that match
this prior knowledge. The inputs are two lists, q1 and q2, that define these two per-
centiles, and the function returns values for the beta parameters, a and b as respective
elements of a vector.

> require(LearnBayes)

> q1 = list(p=.5, x=.3)

> q2 = list(p=.9, x=.5)

> beta.select(q1, q2)

[1] 3.26 7.19

Note the argumentp is the distribution percentile and the argument x is a value forπ .
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Now you have your prior specified as a continuous distribution. You should plot
your prior using the curve function to see if it looks reasonable relative to your
beliefs.

> a = beta.select(q1, q2)[1]

> b = beta.select(q1, q2)[2]

> curve(dbeta(x, a, b), from=0, to=1,

+ xlab="Proportion of Landfalls",

+ ylab="Density", lwd=4, las=1, col="green")

> abline(v=.5, lty=2)

> abline(v=.3, lty=2)

As seen in Figure 4.1, the distribution appears to adequately reflect your prior knowl-
edge of landfall percentages. For reference, the vertical dashed lines are the values
you specified for the median and the 90th percentile. The abline function is used
after the curve is plotted. The v argument in the function specifies where along the
horizontal axis to draw the vertical line on the graph. Recall, to learn more about the
function use ?abline.
This is a start, but you need to take your prior distribution and combine it with a

likelihood function. The likelihood function comes from your data. It is a function
that describes how likely it is, given your model, that you observed the data you actu-
ally have. It might sound a bit confusing, but consider that if you have a good model
for your data, then the probability that your model will replicate your data should be
relatively high.
For example, consider the number of hurricanes over the most recent set of years.

Read the data files containing the annual basin-wide (A) and landfall (US) counts and
compute the sum.1
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Figure 4.1 Beta density describing hurricane landfall proportion.

1 The basin counts were obtained from http://www.aoml.noaa.gov/hrd/tcfaq/E11.

html on January 17, 2012.
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> A = read.table("ATL.txt", header=TRUE)

> US = read.table("H.txt", header=TRUE)

> Yr = 2006

> sum(A$H[A$Year >= Yr])

[1] 34

> sum(US$All[US$Year >= Yr])

[1] 4

You find 4 of the 34 hurricanes made landfall in the United States since 2006.
You could simply report that π = 0.12 or 12 percent of hurricanes make landfall.
However, this is the single sample estimate and it does not consider your prior belief
about p. It also does not have an estimate of uncertainity. In addition, you might
be interested in predicting the number of landfalls in a new sample of next year’s
hurricanes.
If you regard a “success” as a hurricanemaking landfall and you take a random sam-

ple of n hurricanes with s successes and f = n − s failures, then the likelihood function
(or simply, the likelihood) is given by

L(s, f |π) ∝ π s(1−π)f , 0< π < 1 (4.2)

The likelihood depends on the model parameters, here only π and is defined by
your observations written L(data/π). Specifically, the likelihood of π given that you
observed four landfalls in a set of 34 hurricanes is equal to the probability of that
particular observed set of outcomes.
Here the model is the beta density with parameters a = s + 1 and b = f + 1. You

can convince yourself that the likelihood is maximized when π = 0.12 for s = 4 and
f = 30 by plotting L(4,30/π) for π from 0 to 1.
Then with a likelihood function describing your data along with your prior beliefs,

your posterior density for π is obtained up to a proportionality constant, by multi-
plying the prior density (g(π)) by the likelihood (L(data|π)), which is Bayes’s rule
given as

g(π |data)∝ g(π)L(data|π) (4.3)

Your prior represents your thinking about the parameter (in terms of probability)
of interest before examining data. Afterward, you have a likelihood function rep-
resenting the probability of your data, given values for the parameter. Finally, the
posterior probability distribution is computed using Bayes’s rule.
It can be shown that if the prior is a beta density with parameters a and b and the

likelihood is a beta density with parameters s and f , then the posterior density is also
a beta density with parameters a + s and b + f . This is an example of a conjugate
model, where the prior and posterior densities belong to the same family of densities.
To compute and plot the prior, likelihood, and posterior together, type

> s = sum(US$All[US$Year >= Yr])

> f = sum(A$H[A$Year >= Yr]) -

+ sum(US$All[US$Year >= Yr])
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Figure 4.2 Densities describing hurricane landfall proportion.

> curve(dbeta(x, a + s, b + f), from=0, to=1,

+ xlab="Proportion of Landfalls", ylab="Density",

+ col=1, lwd=4, las=1)

> curve(dbeta(x, s + 1, f + 1), add=TRUE, col=2,

+ lwd=4)

> curve(dbeta(x, a, b), add=TRUE, col=3, lwd=4)

> legend("topright", c("Prior", "Likelihood",

+ "Posterior"), col=c(3, 2, 1), lwd=c(3, 3, 3))

The densities are shown in Figure 4.2. Note that the posterior density resembles
the likelihood, but it is shifted in the direction of the prior. This is always the case.
The posterior is a weighted average of the prior and the likelihood where the weights
are proportional to the precision. The greater the precision the more weight it carries
in determining the posterior.
For your prior, the precision is related to how committed you are to a particular

value. Believing that there is a 90 percent chance that the proportion is less than 0.5
provides a quantitative level of commitment. The less committed you are, the flatter
the prior distribution and the less weight it plays in the posterior. For your data, the
precision is inversely related to the standard error, so directly related to the sample
size. The more data you have, the more weight the likelihood plays in determining
the posterior.

4.2 INFERENCE

A benefit of Bayesian statistics is that the posterior distribution contains the infor-
mation you need to make all inferences. In this example, since the posterior is a beta
distribution, the pbeta (cumulative distribution) and qbeta (quantile) functions
can be used. For example, given your prior beliefs and your sample of data, how likely
is it that the population percentage of landfalls is less than or equal to 25 percent?This
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is answered by computing the posterior probabilityP(π ≤ 0.25|data, prior), which is
given by

> pbeta(q=.25, a + s, b + f)

[1] 0.93

You interpret this probability in a natural way.You can state that given the evidence in
hand (data and your prior belief), there is a 93 percent chance that less than or equal
to a quarter of all hurricanes hit the United States (at hurricane intensity). Or you can
state that it is quite unlikely (1.5%) that more than 3 in 10 hurricanes make it to the
United States. (1-pbeta(.3,a+s,b+f)).
You cannot do this with classical statistics. Instead, the p-value resulting from a

significance test is the evidence in support of a null hypothesis. Suppose the null
hypothesis is that the population proportion exceeds 3 in 10. You state Ho : π > 0.3
against the alternative Ha : π ≤ 0.3 and decide between the two on the basis of a
p-value obtained by typing

> prop.test(s, s + f, p=.3, alt="less")$p.value

[1] 0.0165

where the argument p specifies the value of the null hypothesis and the argumentalt
specifies the direction of the alternative hypothesis.
The δ null p-value of 0.016 indicates that if the null is true (the proportion is greater

than 0.3), the evidence seems unusual. You conclude that there is moderate evidence
against the null. However, it is incorrect to conclude from the p-value that there is
only a 1.6 percent chance that the proportion of landfalls is greater than 0.3.

4.3 CREDIBLE INTERVAL

Bayesian interpretation extends to a posterior summaries. For instance, the 95 percent
interval estimate for the percentage of landfalls is obtained from the 2.5th and 97.5th
percentiles of the posterior density. This is done with the qbeta function by typing

> qbeta(c(.025, .975), a + s, b + f)

[1] 0.0713 0.2839

You state the 95 percent credible interval for the proportion is [0.071, 0.284] and
conclude you are 95 percent confident that the true proportion lies inside this interval.
Note the distinction. With a credible interval you say that given the data and your

prior beliefs, there is a 95 percent chance that population proportion lies within this
particular interval. With a confidence interval you say you are 95 percent confident
that the method produces an interval that contains the true proportion. In the former
the population parameter is the random variable, and in the latter the interval is the
random variable.
The 95 percent confidence interval estimate for the proportion π using a large

enough sample of data, where p̂ is the sample proportion and n is the sample size,
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is given by

p̂ ±
√

p̂(1− p̂)
n

× Φ−1(0.975) (4.4)

whereΦ−1(0.975) (inverse of the cumulative distribution function) is the 97.5th per-
centile value from a standard normal distribution. The confidence interval is obtained
by typing

> prop.test(s, s + f)$conf.int

[1] 0.0384 0.2839

attr(,"conf.level")

[1] 0.95

The result allows you to state that the 95 percent confidence interval for the propor-
tion is [0.038, 0.284] and conclude that if you had access to additional samples and
computed the interval in this way for each sample, 95 percent of the intervals will
cover the true proportion.
In some cases, the intervals produced (confidence and credible) from the samedata

set are identical. They are almost certainly different if an informative prior is included
and they may be different even if the prior is relatively uninformative. However, the
interpretations are always different.
With Bayesian statistics inferential statements are easier to communicate. It is nat-

ural to talk about the probability that π falls within an interval or the probability that
a hypothesis is true. Also Bayes’s rule (Eq. 4.3) is the only thing you need to remem-
ber. It is used for small and large samples. It is the only consistent way to update your
probabilities. The cost is that you need to specify your prior beliefs.

4.4 PREDICTIVE DENSITY

So far we focused on learning about the population proportion of hurricanes that
make landfall. Suppose your interest is predicting the number of U.S. landfalls (l̃) in
a future sample of seven hurricanes. If your current understanding of π is contained
in the density g(π) (e.g., the posterior density), then the predictive density for l̃ is
given by

f (l̃)=
∫

f (l̃|π)g(π)dπ (4.5)

With a beta distribution, you can integrate to get an expression for the predictive
density. The beta predictive probabilities are computed using the function pbetap
from the LearnBayes package. The inputs are a vector ab containing the beta
parameters, the size of the future sample m, and a vector of the number of future
landfalls lf.

> ab = c(a + s, b + f)

> m = 7; lf = 0:m
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> plf = pbetap(ab, m, lf)

> round(cbind(lf, plf), digits=3)

lf plf

[1,] 0 0.312

[2,] 1 0.367

[3,] 2 0.216

[4,] 3 0.081

[5,] 4 0.021

[6,] 5 0.004

[7,] 6 0.000

[8,] 7 0.000

Simulation provides a convenient way to compute a predictive density. For exam-
ple, to obtain l̃, first simulate p from g(p) and then simulate l̃ from the binomial
distribution, fB(l|n,p). You can use this approach on your beta posterior. First
simulate 1,000 draws from the posterior and store them in p.

> p = rbeta(n=1000, a + s, b + f)

Then simulate values of l̃ for these random values using the rbinom function and
tabulate them.

> lc = rbinom(n=1000, size=7, prob=p)

> table(lc)

lc

0 1 2 3 4 5

319 351 220 83 20 7

The table indicates that, of the 1,000 simulations, 319 of them resulted in no landfalls,
351 of them resulted in one landfall, and so on.
You save the frequencies in a vector and then convert them to probabilities by

dividing by the total number of simulations. Finally plot the probabilities using the
histogram argument (type="h").

> freq = table(lc)

> pp = freq/sum(freq)

> plot(pp, type="h", xlab="Number of U.S. Hurricanes",

+ las=1, lwd=3, ylab="Predictive Probability")

The plot is shown in Figure 4.3. It is most likely that one of the seven hurricanes will
hit the United States. The probability of four or more doing so is 2.7 percent.
The cumulative sum of the probabilities is found by typing

> cumsum(pp)

0 1 2 3 4 5

0.319 0.670 0.890 0.973 0.993 1.000
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Figure 4.3 Predictive probabilities for the number of landfalling hurricanes.

The probability of three or fewer landfalls is 0.973. Suppose you wish to summarize
this discrete predictive distribution by an interval that covers a certain amount of the
probability.
This can be done using the function discint from the LearnBayespackage. You

combine the vector of probabilities with a vector of counts and specify a coverage
probability as

> mc = length(pp) - 1

> int = discint(cbind(0:mc, pp), .95)

> int

$prob

3

0.973

$set

0 1 2 3

0 1 2 3

The output has two lists, the minimum probability ($prob) greater than the spec-
ified coverage probability (here 95%) and the list of counts ($set) over which the
individual probabilities are summed. You can see the probability is 97.3 percent that
the number of U.S. hurricanes is one of these counts.
The interval covers a range of four counts,which is necessarily wider than the range

of counts computed by using the bounds on the 97.3 percent credible interval around
the population proportion. You check this by typing

> lp = (1 - as.numeric(int$prob))/2

> up = 1 - lp

> (qbeta(up, a + s, b + f) -

+ qbeta(lp, a + s, b + f)) * 7

[1] 1.67
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This is because in predicting a specific value, as you saw in Chapter 3 with the pre-
diction intervals from a linear regression model, there are two sources of uncertainty.
Here the uncertainty about the population proportion π and the uncertainty about
the count given an estimate of π .

4.5 IS BAYES’S RULE NEEDED?

Since all probabilities are ultimately subjective, why is Bayes’s rule needed? Why not
simply examine your data and subjectively determine your posterior probability dis-
tribution, updating what you already know?Would not this save you trouble? Strange
as it sounds, it would actually cause youmore trouble.
The catch is that it is hard to assess probabilities rationally. For example, probabili-

ties must be nonnegative and sum to one. If these are not met, then your probabilities
are said to be inconsistent. In fact they should obey certain axioms of coherent assess-
ment (Winkler, 2003). For example, if you consider event A to be more likely than
event B, and event B to bemore likely than eventC, then you should consider event A
to be more likely than event C. If your probabilities fail to obey transitivity, then your
assessment will be inconsistent in a decision-making sense.
This is not a serious impediment since you can easily remove your inconsistency

once you are made aware of it. If someone notes an arithmetic error, you would
certainly correct it. Similarly, if someone notes that your prior probabilities are not
transitive, you would change them accordingly. In this regard, it is sometimes use-
ful to attempt to assess the same set of probabilities in more than one way in order to
“check” your assessments. Youmight assess probabilities using themean and variance
and then compare these to an assessment based on quantiles.
Importantly, if you obey the axioms of coherence, then to revise your probabilities

youmust use Bayes’s rule. To do otherwise would be inconsistent. Numerous psycho-
logical studies have indicated that people do not always intuitively revise probabilities
on the basis of this rule. People tend to give too little “weight” to the data. In general,
this means that they do not change their probabilities as much as Bayes’s theorem
tells them that they should. By using the rule, you ensure consistency in updating
your beliefs based on the evolving evidence.

4.6 BAYESIAN COMPUTATION

The models and examples presented in this chapter are reasonably simple: for exam-
ple, inference for an unknown success probability, a proportion, themean of a normal,
and so on. For these problems, the likelihood functions are standard, and, if you use
a conjugate model where the prior and posterior densities come from the same fam-
ily, deriving the posterior density poses no computational burden. Indeed this is why
conjugate models like the beta are widely used in Bayesian analysis (Jackman, 2009).
You showed earlier that the probability of a random hurricane hitting the United

States can be modeled using a beta prior. In this case, computation is nothing
but addition. But Bayesian computation quickly becomes more challenging when
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workingwithmore complicatedmodels or when you use nonconjugatemodels. Char-
acterizing the posterior density in these cases becomes nontrivial. Many statistical
models in geography and the social sciences have this feature (see the models in
Chapter 12).
Options still exist. One is brute force. When the posterior distribution is com-

plicated, you can compute values over a grid and then approximate the continuous
posterior by a discrete one (Albert, 2009). This is possible for models with one or two
parameters. In situations where you can directly sample from the posterior, a Monte
Carlo (MC) algorithm gives an estimate for the posterior mean for any function of
your parameters. In the situation where you cannot directly sample,you can use rejec-
tion sampling, provided you have a suitable proposal density or, in the most general
case, you can adopt a Markov chain Monte Carlo (MCMC) approach.

4.6.1 Time-to-Acceptance

Here you assume that information about manuscript review time might be useful to
authors and editors, especially if it can say something about future submissions. This
motivates you to collect data on publication times from recent journals and to model
them. Here you cannot exploit conjugacy so you approximate the posterior with a dis-
crete distribution. You sample directly from the distribution and use anMCalgorithm
for summarizing your samples.
We used the American Meteorological Society (AMS) journals and the keyword

“hurricane” appearing in published titles over the years 2008–2010 (see Hodges et al.
(2012)). The search is done from the web site http://journals.ametsoc.
org/action/doSearch. Selecting “Full Text” on a particular article brings up
the abstract, keywords, and two dates: received and accepted—in month, day, year
format.
The data were originally enteredmanually but are available to you by typing.

> art = read.csv("hurart.txt", header=TRUE)

For each article both dates are provided along with the lead author’s last name and
of the journal. There are 100 articles with the word “hurricane” in the title over the
3-year period. Of these 34, 41, and 25 had “accepted” years of 2008, 2009, and 2010,
respectively. Articles appearing in 2008, but with accepted years before 2008 are not
included.
Journals publishing these articles are shown in Figure 4.4. Ten different journals are

represented. Thirty-seven of these articles are published in Monthly Weather Review,
22 in Journal of the Atmospheric Sciences, 13 in the Journal of Climate, and 12 inWeather
and Forecasting.
First you compute the time period between received and accepted dates. This is

done by converting the numeric values of year, month, and day to an actual date using
the ISOdate function and then using the difftime to compute the time difference
in days.
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Figure 4.4 AMS journals publishing articles with ‘hurricane’ in the title.

> rec = ISOdate(art$RecYr, art$RecMo, art$RecDay)

> acc = ISOdate(art$FinYr, art$FinMo, art$FinDay)

> tau = difftime(acc, rec, units="days")

You call the temporal difference the time-to-acceptance (τ). This is your statistic of
interest.
The mean τ is 195 in 2008 (type mean(tau[art$FinYr==2008])), 168 in

2009, and 193 in 2010. The mean τ for each of the four journals with the most arti-
cles is 166 (Monthly Weather Review), 169 (Journal of the Atmospheric Sciences), 189
(Journal of Climate), and 181 (Weather and Forecasting). On average, the Journal of
Climate is slowest andMonthly Weather Review is fastest, but the difference is less than
3.5 weeks.
Undoubtedly, there are many factors that influence the value of τ . On the editor’s

side, there are prereview, review requests, and dispensation decisions among others.
On the reviewer’s side, there is workload as well as breaks for travel and vacation, and
on the author’s side, there is the effort needed to revise and resubmit.
The goal for you is a predictive distribution for τ . This will allow you to make

inferences about the time-to-acceptance for your future manuscript submissions. You
assume that is τ a random variable having a gamma density given by

f (τ |α,β)=
τα−1exp(−τ

β
)

βαΓ(α)
(4.6)

whereα andβ are the shape and scale parameters, respectively, andΓ(α)= (α−1)!.
The gamma density is commonly used to model time periods (wait times, phone call
lengths, etc.). If you place a uniformprior distribution on the parameter vector (α,β),
the posterior density is given by

g(α,β|τ) ∝ g(α,β)f (τ |α,β) (4.7)

The uniform prior is consistent with a judgment that the parameters are the same
regardless of author or journal. Random draws from this joint posterior density are
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summarized and used as parameters to a gamma density to draw predictive samples
for τ .
To make the computation easier, the posterior density is reformulated in terms of

logα and logμ, where μ = α × β is the posterior mean of τ (Albert, 2009). The
posterior density is available in the gsp.R file (from Jim Albert). Here you source
the function by typing

> source("gsp.R")

Remember to include the quotes around the file name.
Given a pair of parameter values (logα, logμ), the function computes the poste-

rior probability given the data and the posterior density using

logg(α,
μ

α
|τ)= logμ+

n

∑
i=1

log f (τi|α, μ
α
) (4.8)

It performs this computation using pairs of parameters defined as a two-dimensional
grid spanning the domain of the posterior.
The gsp function is used to determine the posterior density as defined in

Eq. 4.8 over a two-dimensional grid of parameter values (on log scales) using the
mycontour function from the LearnBayes package. It is also used to sample from
the posterior using the simcontour function from the same package.
Using these functions, you contour the joint posterior of the two parameters and

then add 1,000 random draws from the distribution by typing

> lim = c(.8, 2.1, 5, 5.45)

> mycontour(gsp, limits=lim, data=tau,

+ xlab="log alpha", ylab="log mu")

> s = simcontour(gsp, lim, data=tau, m=1000)

> points(s$x, s$y, pch=19, col="gray", cex=.5)

These computations may take several seconds to complete. The result is shown in
Figure 4.5. The contours from inside-out are the 10 percent, 1 percent, and 0.1
percent probability intervals on a log scale.
The graph shows that the mean time-to-acceptance is about 181 days (on the ordi-

nate exp(5.2)). This might be useful to an editor. But the posterior gives additional
information. For example, the editor can use your model to estimate the probability
that the average time-to-acceptance will exceed 200 days for the set of manuscripts
arriving next month. Since the model provides random values, question is answered
by finding the percentage of values exceeding the logarithm of 200. Assuming that the
set of manuscripts is a random sample, the model predicts 4.3 percent.
Averages are not particularly useful to you as an author. You would like to

know if a recently submitted manuscript will be accepted in less than 120 days. To
answer this question, you take random draws of τ ’s from a gamma density using
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the random draws from the posterior parameter distribution. This is done with
the rgamma function and then finding the percentage of these draws less than this
many days.

> alpha = exp(s$x)

> mu = exp(s$y)

> beta = mu/alpha

> taum = rgamma(n=1000, shape=alpha, scale=beta)

Here the model predicts a probability of 26 percent. Note that this probability
is lower than the average percentage less than 120 days as it includes additional
uncertainty associated with modeling an individual estimate.
Changes to review rules and manuscript timetables and tracking will influence

time-to-acceptance. To the extent that these changes occur during the period of
data collection or subsequently, they will influence your model’s ability to accurately
anticipate time-to-acceptance.
Model fit is checked by examining quantile statistics from the data against the same

statistics from the posterior draws. For instance, the percentage of articles in the data
with τ less than 90 days is 11, which compares with a percentage of 13.3 from the
posterior draws. Continuing, the percentage of articles with τ longer than 360 days
from the data is 6, which compares with a percentage of 4.4 from the posterior draws.
Themodel has practical applications if you wish to meet a deadline. As an example,

in order for research to be considered by the 5th Assessment Report of the Inter-
governmental Panel on Climate Change (IPCC), you must have your manuscript
accepted for publication byMarch 15, 2013.
The graph in Figure 4.6 shows your model’s predictive probability of meeting this

deadline versus date. Results are based on 1,000 random draws from a gamma distri-
bution where the scale and shape parameters are derived from 1,000 draws from the
joint posterior given the data. The probability is the percentage of posterior τ draws
less than τo days from March 15, 2013. The 95 percent credible interval shown by
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Figure 4.6 Probability of paper acceptance as a function of submit date.

the gray band is obtained by repeating the 1,000 draws from the gamma distribution
1,000 times and taking the 0.025 and 0.975 quantile values of the probabilities. The
probability is high in the early months of 2012 when the deadline is still a year in the
future. However, by mid-September of 2012, the probability drops below 50 percent
and by mid-January 2013, the probability is less than 10 percent.
The predictive probabilities from your model reflect what can be expected if you

submit to an arbitrary AMS journal with “hurricane” in the title under the assump-
tion that your paper will be accepted. Certain journals and authors could have a
faster or slower turnaround time. In this case, you need to use a hierarchical model
(see Chapter 12) to accommodate author and journal differences. With a hierarchical
model, you use anMCMC approach to obtain the posterior probabilities.

4.6.2 Markov ChainMonte Carlo approach

MCMC is a class of algorithms for sampling from a probability distribution using a
Markov chain. It is a way to obtain samples from your posterior distribution. It is
flexible, easy to implement, and requires little input from you. It is one reason behind
the recent surge in popularity of Bayesian statistics.
Gibbs sampling is an example of an MCMC algorithm. Suppose your parameter

vector of interest is θ = (θ1,θ2, . . . ,θp). The joint posterior distribution of theta,
which is denoted [θ | data] may be of high dimension and difficult to summarize.
Instead suppose you define the set of conditional distributions as

[
θ1|θ2, . . . ,θp , data

]
,
[
θ2|θ1,θ3 . . . ,θp, data

]
, · · ·[θp|θ1, . . . ,θp−1, data

]
(4.9)
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where [X|Y ,Z] represents the distribution of X conditional on values of random vari-
ables Y and Z. The idea is that you can set up a Markov chain from the joint posterior
distribution by simulating parameters from the set of p conditional distributions.
Drawing one value for each parameter from these distributions in turn is called

one update (iteration) of the Gibbs sampling. Under general conditions, draws will
converge to the target distribution (joint posterior of θ). Unfortunately, this theoret-
ical result provides no practical guidance on how to decide if the simulated sample
provides a reasonable approximation to the posterior density (Jackman, 2009).

4.6.3 JAGS

A popular general purposeMCMC software that implements Gibbs sampling is Win-
BUGS (Windows version of Bayesian inference Using Gibbs Sampling) (Lunn et al,
2000). It is stand-alone software with a GUI. JAGS (Just Another Gibbs Sampler) is
an open-source project written in C++. It runs on any computing platform and can be
called from R with functions from the rjags package Plummer (2011).
Here you use JAGS on the earlier problem of making inferences about the propor-

tion of U.S. landfalls. The example is simple enough and an MCMC algorithm is not
really necessary, but it is instructive for you to see the work flow as youwill see it again
in Chapter 12. To begin, download and install the latest version of JAGS. This is C++
code that gets installed outside of R. Next open a text file and write the model code
in a language that JAGS understands. You can copy and paste from here. Call the file
JAGSmodel.txt.

___JAGS code___

model {

h ˜ dbin(pi, n) #data

pi ˜ dbeta(a, b) #prior

a <- 3.26

b <- 7.19

}

_______________

Note the similarity to R syntax.
Every JAGS (and BUGS) program begins with a model statement followed by an

open curly brace and ends with an closed curly brace. The second line specifies the
landfall count h using the “twiddle” or “tilde” character, which indicates a stochastic
relation. The stochastic relation is of the form node˜ddens(arguments), where
node is your parameter and ddens is the name of a function calling one of the statis-
tical distributions supported in JAGS. These functions start with the letter d, as here
in dbin for the binomial mass function and dbeta for the beta density used in third
line for your prior. Here the values of the parametersa andb are the same as you used
earlier in the chapter and are set using the deterministic operator (< −).
JAGS and BUGS are declarative languages. R is a procedural language. The JAGS

syntax specifies the model, but it does not define the computational steps. When the
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model.

JAGS model is compiled, the model syntax is turned into a set of sequential instruc-
tions, but this is hidden. Because of this, the statement order is not important. What
matters is that the compiler can resolve the names and links in the model.
Think of the JAGSmodel as a directed acyclic graph (DAG) as shown in Figure 4.7.

Nodes are the parameters and data and arrows indicate the conditional dependency,
either stochastic or deterministic. Hurricane landfall h depends on the number of
hurricanes n and the proportion π , where the proportion π depends on your prior
assumptions encoded in the beta parameters a and b. Landfall proportion π is con-
ditionally dependent on the scale (a) and shape (b) values through the beta density.
The number of landfalls h is dependent on the basin-wide count n and the propor-
tion of landfalls π through the binomial distribution. The conditional independence
structure of your model is clear in the DAG. Note that BUGS allows you to generate
model code from a DAG.
Next open R and type

> require(rjags)

You call JAGS from R with the jags.model function by typing,

> model = jags.model('JAGSmodel.txt',
+ data = list('h'=4, 'n'=34),
+ inits = list('pi'=.5, .RNG.seed=3042,

+ .RNG.name="base::Super-Duper"))

Compiling model graph

Resolving undeclared variables

Allocating nodes

Graph Size: 7

Initializing model
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The function sends the model in file JAGSmodel.txt to JAGS for parsing and com-
piling. Make sure the file is in your working directory. The data argument specifies
the number of landfalling hurricanes h and the number of hurricanes n as a list. The
inits argument directs JAGS to initialize the MCMC although that is not strictly
necessary with this simple model. The last two elements in the inits list specify the
random number generator (RNG) and an initial seed for the generator. This allows
the results to be replicated as the sequence of random numbers will be identical if the
same seed value is used. The object model is of class jags.
By default, the function generates 1,000 samples (updates) of the MCMC algo-

rithm. This is enough for successive values of π to depart from the initial value
and reach the posterior density. In fact, this “burn-in” is instantaneous with this
model. If more iterations are needed, you specify the number in the function with
the argument n.adapt or you can use the updatemethod on the model object by
typing,

> update(model, 1000)

An additional 1,000 iterations from theMCMC are generated but not saved.
Finally you use the coda.samples function to generate posterior samples of

π and save them. It continues updating the chain for the number of iterations
specified by n.iter, but this time it saves them if the parameter is listed in the
variable.names argument.

> out = coda.samples(model, variable.names='pi',
+ n.iter=1000)

CODA stands for COnvergence Diagnostic and Analysis. It describes a suite of
functions for analyzing outputs generated from BUGS software.
The object returned is of class mcmc.list. You use the summarymethod on this

object to obtain a summary of the posterior distribution for π .

> summary(out)

Iterations = 1001:2000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE

0.16294 0.05342 0.00169

Time-series SE

0.00134
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2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

0.0739 0.1228 0.1595 0.1957 0.2878

The output shows first the characteristics of your MCMC sampler and then provides
statistics on the samples from the posterior distribution. The posterior mean indicat-
ing the proportion of all North Atlantic hurricanes that make landfall in the United
States is 0.16. Quantiles of π from the posterior samples indicate that the 95 percent
credible interval for the proportion is (0.07, 0.29).
You obtain other statistics from the posterior samples by extracting the array corre-

sponding to π from the MCMC list and performing the appropriate computations.
For instance, given your prior and your data, how likely is it that the population
percentage of landfalls is less than or equal to 0.25? This is answered by typing,

> pi = as.array(out)

> sum(pi <= .25)/length(pi)

[1] 0.941

Here, because there is only one chain and one variable, you extract the vector from
the array using as.array. The answer (94 percent) compares well with what you
obtained in §4.2 where you used the conjugate model.
Additional analysis can be done with the posterior samples, and the plot method

will produce a trace and density plot of your π values by typing

> plot(out)

The trace plot shows your samples versus the simulation index. The trace plot is useful
in assessing whether your chain has converged. Although the samples vary, the mean
and variance are relatively constant indicating convergence. This is expected with a
simple model. The density plot indicates the distribution of all the samples.
The MCMC approach is flexible and it allows you to easily answer other related

inferential questions. For instance, suppose you want to know the probability that
any two consecutive hurricanes that form in the North Atlantic will hit the United
States. You can add a node to your model of the form pi2 <- pow(pi,2). This is
changed in your file JAGSmodel.txt. You thenmonitor this node and draw inferences
from the posterior samples. Themedian posterior probability indicates only a 16 per-
cent chance of consecutive hurricanes hitting the United States. The result assumes
that consecutive hurricanes are independent.

4.6.4 WinBUGS

WinBUGS and OpenBUGS have functions for modeling spatial data that are not yet
available in JAGS. In Chapter 12, you will build a Bayesian space-time model for your
hurricane data. Here we show you the work flow for implementing a Bayesian model
in WinBUGS through R. If you are using Windows, there is no problem. If you are
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using aMac, your options are limited. One is to runWinBUGSwithWine. Another is
to use OpenBUGSwithout using R.
Here we assume that you are using a Windows machine or running Windows on

a partition of your Mac (e.g., bootcamp). First download and install WinBUGS?2

Make sure you have permission to write files in the directory where the executable
file is stored. Next, write aWinBUGSmodel describing the time-to-acceptance for an
article on hurricanes submitted to the AMS (see §4.6.1). The code is given as follows.

___WinBUGS code___

model {

for (i in 1:N) {

TTA[i] ˜ dgamma(shape, rate)

}

ttastar ˜ dgamma(shape, rate)

ht <- step(120-ttastar)

shape ˜ dgamma(.1, .1)

rate ˜ dgamma(.1, .1)

}

_______________

The syntax is nearly identical to JAGS, and in this case you can run this as a
JAGS model using the work flow described previously. Save the code in Win-
BUGSmodel.txt outside of R. The step function is 1 if its argument is positive and 0
otherwise. The parameterht thus indicates whether the sampled time-to-acceptance
is less than 120 days.
Next prepare the data inputs required by the bugs function from the

R2WinBUGS package. This is a list containing the name of each data vector.

> require(R2WinBUGS)

> N = length(tau)

> TTA = as.numeric(tau)

> data = list("TTA","N")

Using these data together with your model, you run an MCMC sampler to get esti-
mates for ttastar. Beforehand you decide how many chains to run for how many
iterations. If the length of the burn-in is not specified, then the burn-in is taken as half
the number of iterations. You also specify the starting values for the chains. Here you
do this by writing the following function

> inits=function(){

+ list(shape=runif(1, .3, .5), rate=runif(1, .3, .5),

+ ttastar = runif(1, 100, 120))

+ }

2 http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml
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Figure 4.8 Posterior samples of time-to-acceptance. (a) Trace plot and (b) histogram.

You then start the MCMCby typing

> model = bugs(data, inits,

+ model.file="WinBUGSmodel.txt",

+ parameters=c("ttastar", "ht", "shape", "rate"),

+ n.chains=3, n.iter=5000, n.thin=1,

+ bugs.directory="C:/Program Files/WinBUGS14")

The argument bugs.directory must point to the directory containing the Win-
BUGS executable, and youmust have write permission in this directory.
The results are saved in the object model. The bugs function uses the parame-

ter names you gave it in the WinBUGS text file to structure the output into scalar,
vector, and arrays containing the samples. The object model$sims.array, as
example, contains an array of the posterior samples. In addition, the samples are
stored in a vector. You use the print method to get a summary of your results.
Additionally, you use the plot method to create graphs summarizing the posterior
statistics of your parameters (see Figure 4.8) and to display diagnostics relating to
chain convergence. The chains are convergent when your samples are taken from the
posterior.
By default, bugs removes the first half of the iterations as “burn-in”, where the

samples are moving away from the initial set of values toward the posterior dis-
tribution. Samples can be thinned if successive values are highly correlated (see
Chapter 12). The burn-in and thinning determine the final number of samples (saved
in model$n.keep) available for inference.
Here you are interested in the posterior samples of the time-to-acceptance

ttastar. To plot the values as a sequence (trace plot) and as a distribution,
type

> plot(model$sims.array[, 1, 1], type="l")

> plot(density(model$sims.array[, 1, 1]))
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The trace plot shows the sequence of sample values by the simulation number. The
mean and variance of the values do not appear to change across the sequence indi-
cating the samples are coming from the posterior distribution. A view of the marginal
distribution of time-to-acceptance is shown with a histogram.
Because your model contains a node indicating whether the sample time-to-

acceptance is greater than 120 days, you determine the posterior probability of this
occurrence by typing

> sum(model$sims.array[, 1, 2])/model$n.keep

[1] 0.279

The answer of 27.9 percent is close to what you obtained in §4.6.1.
Greater flexibility in summarizing and plotting your results are available with func-

tions in the coda package (Plummer et al., 2010). You turn on the codaPkg switch
and rerun the simulations.

> modelc = bugs(data, inits,

+ model.file="WinBUGSmodel.txt",

+ parameters=c("ttastar", "ht", "shape", "rate"),

+ n.chains=3, n.iter=5000, n.thin=1, codaPkg=TRUE,

+ bugs.directory="C:/Program Files/WinBUGS14")

The saved object modelc is a character vector of file names with each file containing
coda output for one of the three chains. You create anMCMC list object (see §4.6.3)
with the read.bugs function.

> out = read.bugs(modelc, quiet=TRUE)

Additional plotting options are available using the lattice package. To plot the density
of all the model parameters, type

> require(lattice)

> densityplot(out)

The plots contain distributions of the MCMC samples from all the model nodes and
for the three chains. Density overlap across the chains is another indication that the
samples are from the posterior.
This chapter introduced Bayesian statistics for hurricane climate. The focus was

on the proportion of landfalling hurricanes. We examined a conjugate model for this
proportion.We also looked at the time-to-acceptance for amanuscript. The conjugate
model revealed themechanics of the Bayesian approach.We also introducedMCMC
samplers. This innovation allows you flexibility in creating models for your data. The
next chapter shows you how to graph and plot your data.

jelsner
Sticky Note
remove "you"




