
Elsner: “03˙ELSNER˙CH03” — 2012/9/24 — 16:05 — page 33 — #1

3
CLASSICAL STATISTICS

“The difference between ‘significant’ and ‘not significant’ is not itself statistically
significant.”
—Andrew Gelman

All hurricanes are different but Statistics helps you characterize hurricanes from the
typical to the extreme. In this chapter, we provide an introduction to classical (or
frequentist) statistics. To get the most out of it, we again encourage you to open an R
session and type in the code as you read along.

3.1 DESCRIPTIVE STATISTICS

Descriptive statistics are used to summarize your data. Themean and the variance are
good examples. So is correlation. Data can be a set of weather records or output from
a global climate model. Descriptive statistics provide answers to questions like does
Jamaica experiencemore hurricanes than Puerto Rico?
In Chapter 2, you learned some functions for summarizing your data, let us review.

Recall that the data set H.txt is a list of hurricane counts by year making landfall in
the United States (excluding Hawaii). To input the data and save them as a data
object, type

> H = read.table("H.txt", header=TRUE)

Make sure the data file is located in your working directory. To check your working
directory, type getwd().
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3.1.1 Mean,Median, andMaximum

Sometimes all you need are a few summary statistics from your data. You can obtain
the mean and variance by typing

> mean(H$All); var(H$All)

[1] 1.69375

[1] 2.10059

Recall that the semicolon acts as a return so you can place multiple function com-
mands on the same text line. The sample mean is a measure of the central tendency
and the sample variance is a measure of the spread. These are called the first- and
second- moment statistics. Like all statistics, they are random variables. A random
variable can be thought of as a quantity whose value is not fixed; it changes depending
on the values in your sample.
If you consider the number of hurricanes over a different sample of years, the sam-

ple mean will almost certainly be different. Same with the variance. The sample mean
provides an estimate of the populationmean (themean over all past and future years).
Different samples drawn from the same population will result in different values, but
as the sample size increases, the values will get closer to the population values.
The values printed on your screen have too many digits. Since there are only 160

years, the number of significant digits is 2 or 3. This can be changed using thesignif
function.

> signif(mean(H$All), digits=3)

[1] 1.69

Notice how the functions are nested.Here themean function is nested in thesignif
function. You can also set the numbers of digits globally using the options function
as mentioned in Chapter 2.
Themedian, standard deviation, maximum, andminimum are obtained by typing

> median(H$All); sd(H$All); max(H$All); min(H$All)

[1] 1

[1] 1.45

[1] 7

[1] 0

At least one year had seven hurricanes hit the U.S. coast. Higher-order moments like
skewness and kurtosis are available in the moments package.
To determine which year has the maximum, you first test each year’s count against

the maximum using the logical operator ==. This provides a list of years for which
the operation returns a TRUE. You then subset the hurricane year according to this
logical list. For example, type

> maxyr = H$All == max(H$All)

> H$Year[maxyr]

[1] 1886
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This tells you that 1886 is the single year with the most hurricanes.
Thewhich.max function is similar but returns the rownumber index correspond-

ing only to the first occurrence of the maximum. You can then subset the hurricane
year on the index.

> H$Year[which.max(H$All)]

[1] 1886

Similarly, to find the years with no hurricanes, type

> H$Year[H$All == min(H$All)]

[1] 1853 1862 1863 1864 1868 1872 1884 1889 1890

[10] 1892 1895 1902 1905 1907 1914 1922 1927 1930

[19] 1931 1937 1951 1958 1962 1973 1978 1981 1982

[28] 1990 1994 2000 2001 2006 2009 2010

And to determine howmany years have no hurricanes, type

> sum(H$All == 0)

[1] 34

The sum function counts a TRUE as 1 and a FALSE as 0, so the result tells you how
many years have a count of zero hurricanes.
You also might be interested in streaks. For instance, what is the longest streak

of years without a hurricane? To answer this, first you create an ordered vector of
years with at least one hurricane. Next you use the diff function to take differences
between sequential years given in the ordered vector. Finally, you find the maximum
of these differences minus one.

> st = H$Year[H$All > 0]

> max(diff(st) - 1)

[1] 3

Thus the longest streak without hurricanes is only 3 years.
Alternatively, you can use the rle function to compute the length and values of

runs in a vector and then table the results.

> st = H$All == 0

> table(rle(st))

values

lengths FALSE TRUE

1 2 21

2 6 5

3 4 1

4 4 0

5 2 0

6 3 0

7 2 0
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8 1 0

10 1 0

11 1 0

13 1 0

The results show five sets of two consecutive years without a hurricane and one set of
three consecutive years without a hurricane.

3.1.2 Quantiles

Percentiles also help you describe your data. The pth percentile (p/100 quantile) is
the value that cuts off the first p percent of the data when the data values are sorted in
ascending order. The quantile function is used to obtain these values.
First import the NAO data file. Refer to Chapter 6 for a description of these data.

> NAO = read.table("NAO.txt", header=TRUE)

To obtain quantiles of the June NAO values, type

> nao = NAO$Jun

> quantile(nao)

0% 25% 50% 75% 100%

-4.050 -1.405 -0.325 0.760 2.990

By default, you get the minimum, the maximum, and the three quartiles (the 0.25,
0.5, and 0.75 quantiles), so named because they correspond to a division of the values
into four equal parts. The difference between the first and third quartiles is called the
IQR. which is sometimes use as an alternative to the standard deviation because it is
less affected by extremes.
To obtain other quantiles, you include the argument prob in the function. For

example, to find the 19th, 58th, and 92nd percentiles of the June NAO values, type

> quantile(nao, prob=c(.19, .58, .92))

19% 58% 92%

-1.620 -0.099 1.624

Be aware that there are different ways to compute quantiles. Details can be found in
the documentation (type help(quantile)).

3.1.3 Missing Values

Things become a bit more complicated if your data contain missing values. R han-
dles missing values in different ways depending on the context. With a vector of
values, some of which are missing and marked with NA, the summary function com-
putes statistics and returns the number of missing values. For example, read in the
monthly sea-surface temperatures (SST.txt), create a vector of August values, and
summarize them.
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> SST = read.table("SST.txt", header=TRUE)

> sst = SST$Aug

> summary(sst)

Min. 1st Qu. Median Mean 3rd Qu. Max.

22.6 23.0 23.1 23.1 23.3 23.9

NA's
5.0

Here you see the summary statistics and note that there are 5 yearswithmissing values
during August. The summary statistics are computed by removing the missing values.
However, a function that computes a statistic, like the mean, applied to a vector

with missing values returns an NA.

> mean(sst)

[1] NA

In this case, R does not remove the missing values unless requested to do so. The
mean of a vector with an unknown value is unknown. If you wish to have the missing
values removed, you need to include the argument na.rm=TRUE,

> mean(sst, na.rm=TRUE)

[1] 23.1

An exception is the length function, which does not understand the argument
na.rm, so you cannot use it to count the number of missing values. Instead, you use
the is.na function, which returns a TRUE for amissing value and FALSE otherwise.
You then use the sum function to count the number of TRUEs. For your August SST
data, type

> sum(is.na(sst))

[1] 5

The number of nonmissing data values are obtained by using the logical negation
operator ! (read as ‘not’). For example, type

> sum(!is.na(sst))

[1] 155

This tells you there are 155 years with August SST values.

3.2 PROBABILITY AND DISTRIBUTIONS

Climate is the set of all weather patterns. You can think ofweather as a data-generating
machine. For example, with each season the number of hurricanes is recorded as
a count. This count is a data value from the weather machine that gets collected
alongside counts from other years. Other data are also available like the highest wind
speed, and so on. This view of data arising from a generating process gives statistics a
prominent role in understanding climate.
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3.2.1 RandomSamples

Statistics is an application of probability theory. Probability theory arose from study-
ing games of chance like rolling dice and picking cards at random. Randomness and
probability are central to statistics.
You can simulate games of chance with the sample function. For instance, to pick

4 years at random from the 1990s, you type

> sample(1990:1999, size=4)

[1] 1997 1995 1998 1996

The sequence function : is used to create a vector of 10 values representing the
years in a decade. The sample function is then used to pick, at random without
replacement, a set of four (size=4) values. This is called a random sample.
Notice that in deciphering R code, it is helpful to read from right to left and from

inside to outside. That is, you start by noting a size of four from a sequence of numbers
from 1990 through 1999 and then taking a sample from these numbers.
The default is “sample without replacement.” The sample will not contain a repeat

year. If you want to sample with replacement, use the argument replace=TRUE.
Sampling with replacement is suitable for modeling the occurrence of El Niño (E)
and La Niña (L) events. An El Niño event is characterized by a warm ocean along
the equator near the coast of Peru. A La Niña event is just the opposite. The fluctua-
tion between El Niño and La Niña events coincides with the fluctuation in hurricane
activity.
Tomodel the occurrence over 10 random seasons, type

> sample(c("E", "L"), size=10, replace=TRUE)

[1] "L" "E" "L" "E" "E" "E" "L" "L" "E" "E"

Historically, the probability of an El Niño is about the same as the probability of a
La Niña, but the idea of random events is not restricted to equal probabilities. For
instance, suppose you are interested in the occurrence of hurricanes hitting Florida.
Let the probability be 12 percent that a hurricane picked at random hits Florida. You
simulate 24 random hurricanes by typing

> sample(c("hit", "miss"), size=24, replace=TRUE,

+ prob=c(.12, .88))

[1] "miss" "miss" "miss" "miss" "hit" "miss" "miss"

[8] "miss" "hit" "miss" "miss" "miss" "miss" "miss"

[15] "miss" "miss" "miss" "miss" "hit" "miss" "miss"

[22] "miss" "miss" "miss"

The simulated frequency of hits will not be exactly 12 percent, but the variation about
this percentage decreases as the sample size increases according to the law of large
numbers).
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3.2.2 Combinatorics

Returning to your set of years from a decade. Common sense tells you that the prob-
ability of getting each of the 10 years in a sample of size 10 with each year picked at
randomwithout replacement is one. But what is the probability of randomly drawing
a set of three particular years?
This isworkedout as follows. The probability of getting a particular year (say 1992)

as the first one in the sample is 1/10, the next one is 1/9, and the next one is 1/8.Thus
the probability of a given sample is 1/(10× 9× 8). The prod function calculates the
product of a set of numbers, so you get the probability by typing

> 1/prod(10:8)

[1] 0.00139

Note that this is the probability of getting a set of 3 years in a particular order (i.e.,
1992, 1993, 1994). If you are not interested in the arrangement of years, then you
need to include the cases that give the 3 years in a different order. The probability
will be the same if the years are in any order, so you need to know the number of
combinations and then multiply this number by the previous probability.
Given a sample of three numbers, there are three possibilities for the first number,

two possibilities for the second, and only one possibility for the third. Thus the num-
ber of combinations of three numbers in any order is 3× 2× 1 or 3!. You can use the
factorial function andmultiply this number by the probability to get

> factorial(3)/prod(10:8)

[1] 0.00833

Thus the probability of a given sample of 3 years in any order is 0.83 percent.
You get the same result using the choose function. For any set containing n ele-

ments, the number of distinct x-element samples of it that can be formed (the x
combinations of its elements) is given by(
n
x

)
=

n!

x!(n− x)!
, (3.1)

which is read as “n choose x.” The multiplicative inverse of this number is the proba-
bility. You can check the equality of these two ways of working out the probability by
typing

> factorial(3)/prod(10:8) == 1/choose(10,3)

[1] TRUE

Recall that the double equal signs indicate a logical operator with two possible
outcomes (TRUE and FALSE), so a return of TRUE indicates equality.

3.2.3 Discrete distributions

It is likely that you are more interested in some calculated value from a random sam-
ple. Instead of a set of hits and misses on Florida from a sample of hurricanes, you

jelsner
Sticky Note
change to "...by the above probability..."



Elsner: “03˙ELSNER˙CH03” — 2012/9/24 — 16:05 — page 40 — #8

40 Classical Statistics

might want to know the number of hits. Since the set of hits is random so is the sum
over all hits.
The number of hits is another example of a random variable. In this case, it is a

nonnegative integer that can take on values in 0,1,2, . . . ,n, where n is the total number
of hurricanes. Said another way, given a set of nNorthAtlantic hurricanes, the number
that hits Florida is a discrete random variableH.
A random variable H has a probability distribution that is described using f (h) =

P(H = h). The set of all possible Florida counts is the random variable denoted with
a largeH, while a particular count is denotedwith a small h. This is standard statistical
notation. Thus f (h) is a function that assigns a probability to each possible count. It
is written as

f (h|p,n)=
(
n
h

)
ph(1− p)n−h, (3.2)

where the parameter p is the probability of a Florida hit given a North Atlantic hur-
ricane. This is known as the binomial distribution and

(n
h
)
is known as the binomial

coefficient.
Returning to your example above, in a set of 24 hurricanes with a probability p =

12% that a hurricane picked at random hits Florida (hit rate), the probability that
exactly three of them will strike Florida [P(H = 3)] is found by typing

> choose(24, 3) * .12ˆ3 * (1 - .12)ˆ(24 - 3)

[1] 0.239

Thus there is a 23.9 percent chance of having 3 of the 24 hurricanes hit Florida. Note,
there is a probability associatedwith all nonnegative integer from0 to 24. For counts 0
to 15, the probabilities are plotted in Figure 3.1. The distribution is discrete with prob-
abilities assigned only to counts. The distribution peaks at three and four hurricanes,
and there are small but nonzero probabilities for the largest counts.
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Figure 3.1 Probability of h Florida hurricanes, given a random sample of 24 North Atlantic
hurricanes using a binomial model with a hit rate of 12%.
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3.2.4 ContinuousDistributions

A lot of climate data all available as observations on a continuous scale. For instance,
the NAO index used in Chapter 2 is given in values of standard deviation. Values are
recorded to a finite precision, but in practice this is generally not relevant. What is
relevant is the fact that the values tend to cluster near a central value; values far from
this central value are more rare than values farther from it.
A continuous value has no probability associated with it. This is because there are

infinitely many values between any two values, so the probability at any particular
one is zero. Instead we have the concept of density. The density of a continuous ran-
dom variable is a function that describes the relative likelihood that the variable will
have a particular value. The density is the probability associated with a small region
around the value divided by the size of the region. This probability density function is
nonnegative and its sum over the set of all possible values is equal to one.
The cumulative distribution function for continuous random variables is given by

F(x)=
∫ x

−∞
f (u)du (3.3)

If f is continuous at x, then

f (x)=
d
dx

F(x) (3.4)

You can think of f (x)dx as the probability of X falling within the small interval
[x, x+dx].
The most common continuous distribution is the normal (or Gaussian distribu-

tion). It has a density given by

f (x|μ,σ 2)=
1√
2πσ 2

e−
(x−μ)2

2σ2 (3.5)

where the parameter μ is the mean and the parameter σ 2 is the variance. We
write N(μ,σ 2) as a shorthand for this distribution. The normal distribution has the
characteristic bell shape with the mean located at the peak of the distribution.
Changing μ shifts the distribution left or right changing σ 2 widens and narrows

the distribution, while the values remain symmetric about the peak (Fig. 3.2). The
distance between the two inflection points, where the curves change from opening
downward to opening upward, is two standard deviations. The normal distribution
is a family of distributions, where the family members have different parameter val-
ues. The family member with μ = 0 and σ 2 = 1 is called the standard normal
distribution.
The normal distribution is the foundation for many statistical models. It is ana-

lytically tractable and arises as the outcome of the central limit theorem, which states
that the sum of a large number of random variables, regardless of their distribution,
is distributed approximately normally. Thus the normal distribution is commonly
encountered in practice as a model for complex phenomena. In climatology, it is used
as a model for observational error and for the propagation of uncertainty.
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Figure 3.2 Probability density functions for a normal distribution.

3.2.5 Distributions

In R distributions are functions. This eliminates the need for lookup tables. Distri-
butions come in families. Each family is described by a function with parameters. As
noted earlier, the normal distribution is a family of distributions with each member
having a different mean and variance.
The uniform distribution is a family of continuous distributions on the interval [a,b]

that assigns equal probability to equal-sized areas in the interval, where the parameters
a and b are the endpoints of the interval. Here we look at the normal and Poisson
distributions, but the others follow the same pattern.
Four items can be calculated for a statistical distribution:

• Density or point probability
• Cumulative distribution function
• Quantiles
• Random numbers

For each distribution, there is a function corresponding to each of the four items.
The function has a prefix letter indicating which item. The prefix letter d is used for
the probability density function, p is used for the cumulative distribution function, q
is used for the quantiles, and r is used for random samples. The root name for the
normal distribution in R is norm, so the probability density function for the normal
distribution is dnorm, the cumulative distribution function is pnorm, the quantile
function is qnorm, and the random sample function is rnorm.

3.2.6 Density

The density for a continuous distribution is a measure of the relative probability of
getting a value close to x. With “close” defined as a small interval, this probability
is the area under the curve between the endpoints of the interval. The density for a
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discrete distribution is the probability of getting exactly the value x. It is a density with
respect to a counting measure.
You can use the density function to draw a picture of the distribution. First create

a sequence of x values, then plot the sequence along with the corresponding densities
from a distribution with values for the parameters.
As an example, the Weibull continuous distribution provides a good description

for wind speeds. To draw its density, type

> w = seq(0, 80, .1)

> plot(w, dweibull(w, shape=2.5, scale=40), type="l",

+ ylab="Probability density")

The seq function generates equidistant values in the range from 0 to 80 in steps of
0.1. The distribution has two parameters: the shape and scale. Along with the vector
of w values, you must specify the shape parameter. The default for the scale parame-
ter is 1. The result is shown in Figure 3.3. Here the parameters are set to values that
describe tropical cyclone wind speeds. The family of Weibull distributions includes
members that are not symmetric. In this case, the density values in the right tail of the
distribution are higher than they would be under the assumption that the winds are
described by a normal distribution.
You create a similar plot using the curve function by typing

> curve(dweibull(x, shape=2.5, scale=40), from=0,

+ to=80)

Note that the first argument (here dweibull) must be a function or expression that
contains x.
For discrete distributions, it is better to use pins as discrete symbols rather than a

continuous curve. As an example, the Poisson distribution is a good description for
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Figure 3.3 Probability density function for a Weibull distribution.
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Figure 3.4 Probability mass function for a Poisson distribution.

hurricane counts. To draw its distribution, type

> h = 0:16

> plot(h, dpois(h, lambda=5.6), type="h", lwd=3,

+ ylab="Probability distribution")

The result is shown in Figure 3.4. The distribution corresponds to the probability of
observing h number of hurricanes, given a value for the rate parameter. The argument
type="h" causes pins to be drawn. The Poisson distribution is a limiting form of
the binomial distribution with no upper bound on the number of occurrences. The
rate parameter λ characterizes this process. For small values of λ, the distribution is
positively skewed.

3.2.7 CumulativeDistribution Functions

The cumulative distribution function describes the probability less than or equal to
a value x. It can be plotted, but it is often more informative to get probabilities for
distinct values. The function pnorm returns the probability of getting a value equal
to or smaller than its first argument in a normal distribution with a given mean and
standard deviation.
For example, consider again the NAO data for June. Assuming these values are

described by a normal distribution with a mean of −0.38 and standard deviation of
1.43, the chance that a June value is less than−1.5 is gotten by typing

> pnorm(-1.5, mean=mean(nao), sd=sd(nao))

[1] 0.217

or approximately 22 percent. That is, only about 22 percent of the June NAO values
are less than or equal to−1.5.
Consider the hurricane data as another example.The annual rate of East Coast hur-

ricanes is obtained by typing mean(H$E). This is the rate (λ) parameter value for the
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Poisson distribution. So the probability of next year having no East Coast hurricane is
obtained by typing

> ppois(0, lambda=mean(H$E))

[1] 0.626

You express the probability as a percentage and round to three significant figures by
typing

> round(ppois(0, lambda=mean(H$E)), digits=3) * 100

[1] 62.6

3.2.8 Quantile Functions

The quantile function is the inverse of the cumulative distribution function. The p-
quantile is the value such that there is a p probability of getting a value less than or
equal to it. The median value is, by definition, the .5 quantile.
In tests of statistical significance (see the next section), the p-quantile is usually set

at p = 0.05 and is called the α = p× 100% significance level. You are interested in
knowing the threshold that a test statistic must cross in order to be considered signifi-
cant at that level. The p-value is the probability of obtaining a value as large, or larger,
than the p-quantile.
Theoretical quantiles are also used to calculate confidence intervals. If you have n

normally distributed observations from a population with meanμ and standard devi-
ation σ , then the average x̄ is normally distributed aroundμ with standard deviation
σ/

√
n. A 95 percent confidence interval forμ is obtained as

x̄+σ/
√
n×N.025 ≤ μ ≤ x̄+σ/

√
n×N.975 (3.6)

where N0.025 and N0.975 are the 2.5 and 97.5 percentiles of the standard normal
distribution, respectively.
You compute a 95 percent confidence interval about the population mean using

the sample of June NAO values by typing

> xbar = mean(nao)

> sigma = sd(nao)

> n = length(nao)

> sem = sigma/sqrt(n)

> xbar + sem * qnorm(.025)

[1] -0.604

> xbar + sem * qnorm(.975)

[1] -0.161

This produces a 95% confidence interval for the populationmean of [−0.6, −0.16].
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The normal distribution is symmetric so −N0.025 = N0.975. You can verify this by
typing

> -qnorm(.025); qnorm(.975)

[1] 1.96

[1] 1.96

Note that qnorm(.025) gives the left tail value of the normal distribution and that
qnorm(.975) gives the right tail value.
Also the quantile for the standard normal is often written as Φ−1(.975), where Φ

is the notation for the cumulative distribution function of the standard normal. Thus
it is common to write the confidence interval for the populationmean as

x̄±σ/
√
n× Φ−1(.975) (3.7)

Another application of the quantile function is to help assess the assumption of
normality for a set of observed data. This is done by matching the empirical quantiles
with the quantiles from the standard normal distribution. We give an example of this
in Chapter 5.

3.2.9 RandomNumbers

Random numbers are generated from algorithms. But the sequence of values appear
as if they were drawn randomly. That is why they are sometimes referred to as
“pseudo-random” numbers.
Random numbers are important in examining random variation. They are also

important in simulating synthetic data that have the same statistical properties as your
observations. This is useful when youwant to knowwhat effect your assumptions and
approximations have on your results.
The distribution functions can generate random numbers (deviates) for you. The

first argument specifies the number of random numbers to generate, and the subse-
quent arguments are the parameters of the distribution. For instance, to generate 10
random numbers from a standard normal distribution, type

> rnorm(10)

[1] -0.1950 -1.0521 -0.5509 1.2252 -0.3236 1.6867

[7] 0.3956 -0.2206 -0.0383 -1.3363

Your numbers will be different than those printed here since they are generated
randomly. It is a good strategy to generate the same set of random numbers each
time in an experimental setting. You do this by specifying a random number gener-
ator (RNG) and a seed value. If the RNG is the same and the seed value is the same,
the set of random numbers will always be the same.

> set.seed(3042)

> rnorm(10)

[1] 0.644 -0.461 1.400 1.123 0.908 0.320 -1.014

[8] -0.241 0.523 -1.694
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Here the set.seed function uses the default Mersenne Twister RNG with a seed
value of 3042. Note that the commands must by typed in the same order; first set the
seed, then generate the random numbers.
Specifying an RNG and a seed value allows your results to be replicated exactly.

This is important when your results depend on a method that exploits random val-
ues as is the case with some of the Bayesian models you will consider in Chapters 4
and 12.
To simulate the next 20 years of Florida hurricane counts based on the counts over

the historical record, you type

> rpois(20, lambda=mean(H$FL))

[1] 1 1 1 1 3 1 0 0 0 0 0 1 1 0 1 0 1 0 0 0

To simulate the maximum wind speed (m s−1) from the next 10 tropical cyclones
occurring over the North Atlantic, you type

> rweibull(10, shape=2.5, scale=50)

[1] 51.7 38.7 18.2 30.5 41.2 82.7 47.9 100.4

[9] 26.1 21.3

Note that if your numbers are the same as those here, you continued with the same
sequence of RNG initiated with the seed value provided earlier.

3.3 ONE-SAMPLE TEST

Inferential statistics refers to using your data to draw conclusions. Perhaps the sim-
plest case involves testing whether your data support a particular mean value. The
population mean is a model for your data and your interest is whether your single
sample of values is consistent with this simple meanmodel.
The one-sample t (Student’s t) test is based on the assumption that your data val-

ues (xi, . . . ,xn) are independent and come from a normal distribution with a meanμ

and variance σ 2. The shorthand notation is

xi ∼ iidN(μ,σ 2) (3.8)

where the abbreviation iid indicates “independent and identically distributed.” You
wish to test the null hypothesis thatμ=μ0.
You estimate the parameters of the normal distribution from your sample. The

average x̄ is an estimate of μ and the sample variance s2 is an estimate of σ 2. It is
important to keep in mind that you can never know the true parameter values. In
statistical parlance, they are said to be fixed, but unknowable.
The key concept is that of the standard error. The standard error of the mean (or

s.e.(x̄)) describes the variation in your average calculated from your n values. That is,
suppose youhad access to another set ofn values (from the same set of observations or
from the same experiment) and you again compute x̄ from these values. This average
will almost surely be different from the average calculated from the first set.
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Statistics from different samples taken from the same populationwill vary. You can
demonstrate this. First generate a population from a distribution with a fixed mean
(3) and standard deviation (4).

> X = rnorm(2000, mean=3, sd=4)

Next take five samples each with a sample size of six and compute the average. This
can be done using a for loop. The loop structure is for(i in 1:n){cmds}, where
i is the loop index and n is the number of times the loop will execute the commands
(cmds). Here your command is print the mean of a sample of six from the vector X.

> for(i in 1:5) print(mean(sample(X, size=6)))

[1] 1.68

[1] 1.34

[1] 3.05

[1] 4.35

[1] 1.01

The list of sample means are not all the same and not equal to three.
What happens to the variability in the list of means when you increase your sample

size from6 to 60?What happenswhen you increase the population standard deviation
from 4 to 14? Try it.
The standard error of the mean is

s.e.(x̄)=
σ√
n

(3.9)

where σ is the population standard deviation and n is the sample size. Even with only
a single sample, we can estimate s.e.(x̄) by substituting the sample standard deviation
s for σ .
The s.e.(x̄) tells you how far the sample averagemay reasonably be from the popu-

lation mean. With data that are normally distributed there is a 95 percent probability
of the sample average staying within μ ± 1.96σ . Note how this is worded. It implies
that if you take many samples from the population, computing the average for each
sample, you will find that 95 percent of the samples have an average that falls within
about two s.e.(x̄)s of the population mean.
The value of 1.96 comes from the fact that the difference in cumulative probability

distribution from the standard normal between±1.96 is .95. To verify, type

> pnorm(1.96) - pnorm(-1.96)

[1] 0.95

With a bit more code, you can verify this for your sample of data saved in the object
X. This time instead of printing five sample averages, you save 1,000 of them in an
object called Xb. You then sum the number of TRUEs when logical operators are
used to define the boundaries of the interval.

> set.seed(3042)

> X = rnorm(2000, mean=3, sd=4)
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> Xb = numeric()

> for(i in 1:1000) Xb[i] = mean(sample(X, size=6))

> p = sum(Xb > 3 - 2 * 4/sqrt(6) &

+ Xb < 3 + 2 * 4/sqrt(6))/1000

> p

[1] 0.952

That is, for a given sample, there is a 95 percent chance that the interval defined by
the s.e.(x̄) will cover the true (population) mean.
In the case of a one-sample test, you postulate a population mean and you have

a single sample of data. For example, let μ0 be a guess at the true mean, then you
calculate the t statistic as

t =
x̄−μ0

s.e.(x̄)
(3.10)

With (x̄−μ0) = 2× s.e.(x̄), your t statistic is two. Your sample mean could be larger
or smaller thanμ0 so t can be between−2 and+2 with x̄within 2 s.e.(x̄)s ofμ0.
If you have few data (less than about 30 cases), you need to correct for the fact

that your estimate of s.e.(x̄) uses the sample standard deviation rather than σ . By
using s instead of σ in Eq. 3.9, your chance of being farther from the population
mean is larger. The correction is made by substituting the t-distribution (Student’s
t-distribution) for the standard normal distribution.
Like the standard normal, the t-distribution is continuous, symmetric about the

origin, and bell-shaped. It has one parameter called the degrees of freedom (ν) that
controls the relative “heaviness” of the tails. The degrees of freedom (d.f.) parameter
ν = n− 1, where n is the sample size. For small samples, the tails of the t-distribution
are heavier than the tails of a standard normal distribution (see Fig. 3.5),meaning that
it is more likely to produce values that fall far from the mean.
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Figure 3.5 Probability density functions.

jelsner
Sticky Note
add to caption "Standard normal distribution [N(0, 1)] and t-distributions with 9 and 1 d.f.



Elsner: “03˙ELSNER˙CH03” — 2012/9/24 — 16:05 — page 50 — #18

50 Classical Statistics

For instance, the difference in cumulative probabilities at the±1.96 quantile values
from a t-distribution with 9 d.f. is given by

> pt(q=1.96, df=9) - pt(q=-1.96, df=9)

[1] 0.918

This probability is smaller than that for the standard normal distribution. This indi-
cates that only about 92 percent of the time the interval between±1.96 will cover the
true mean. Note in the figure how the t-distribution approximates the normal distri-
bution as the sample size increases. For sample sizes of 30 or more, there is essently
no difference.
First, given a hypothesized population mean (μ0), the t statistic is computed from

your sample of data using Eq. 3.10. Next the cumulative probability of that value is
determined from the t-distribution with d.f. equal to sample size minus one. Finally,
the probability is multiplied by two to obtain the p-value. A small p-value leads to a
rejection of the null hypothesis and a large p-value leads to a failure to reject the null
hypothesis.
The p-value is an estimate of the probability that a particular result, or a result more

extreme than the result observed, could have occurred by chance if the null hypothesis
is true. In the present case, if the true mean is μ0, what is the probability that your
sample mean is as far or farther from μ0 as it is? In short, the p-value is a measure of
the credibility of the null hypothesis. The higher the p-value, the more credible the
null hypothesis appears given your sample of data.
But the p-value, is best interpreted as evidence against the null hypothesis, thus a

small value indicates evidence to reject the null. The interpretation is not black and
white. A convenient way to express the evidence is given in Table 3.1.
To illustrate, consider the area-averaged North Atlantic SST values each August

in units of degree cel as an example. Input the monthly data and save the values for
August in a separate vector by typing

> SST = read.table("SST.txt", header=TRUE)

> sst = SST$Aug

Begin with a look at a summary table of these values.

Table 3.1 The p-Value as evidence
against the null hypothesis.

p-value Evidence Against
Range Null Hypothesis

0–0.01 Convincing
0.01–0.05 Moderate
0.05–0.15 Suggestive, but inconclusive
>0.15 None
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> summary(sst)

Min. 1st Qu. Median Mean 3rd Qu. Max.

22.6 23.0 23.1 23.1 23.3 23.9

NA's
5.0

The median temperature is 23.1◦Cwith a maximum of maximum of 23.9◦C over the
155 years. Note that the object sst has a length of 160 years, but the first 5 years have
missing values.
Youmight be interested in the hypothesis that the values deviate significantly from

23.2◦C. Although we spent some effort to explain the test statistic and procedure, the
application is rather straightforward. The task for you is to test whether this distribu-
tion has a mean μ = 23.2. Assuming the data come from a normal distribution, this
is done using the t.test function as follows:

> t.test(sst, mu=23.2)

One Sample t-test

data: sst

t = -2.94, df = 154, p-value = 0.003759

alternative hypothesis: true mean is not equal to 23.2

95 percent confidence interval:

23.1 23.2

sample estimates:

mean of x

23.1

Here there are several lines of output. The output begins with a description of the
test you asked for followed by the name of the data object used (here sst). The next
line contains the value of the t-statistic (t) as defined in Eq. 3.10, degrees of freedom
(df), and the p-value (p-value).
The degrees of freedom is the number of values in calculating the t-statistic that are

free to vary. Here it is equal to the number of years (number of independent pieces of
information) that go into calculating the t-statisticminus the number of statistics used
in the intermediate steps of the calculation. Equation 3.10 shows only one statistic
(the mean) is used, so the number of degrees of freedom is 159.
You do not need a table of the t-distribution to look at which quantiles the t-statistic

belongs to. You can see that the p-value is 0.004 indicating conclusive evidence against
the null hypothesis that the mean is 23.2. When the argument mu= is left off, the
default is mu=0.
A sentence regarding the alternative hypothesis is printed next. It has two pieces

of information: the value corresponding to your hypothesis and whether your test is
one- or two-sided. Here it states not equal to, indicating a two-sided test.
You specify a one-sided test against the alternative of a larger μ by using the

alternative="greater" argument. For instance, you might hypothesize the
temperature to exceed a certain threshold value. Note that abbreviated argument

jelsner
Sticky Note
change to "154"

jelsner
Sticky Note
change to "convincing"



Elsner: “03˙ELSNER˙CH03” — 2012/9/24 — 16:05 — page 52 — #20

52 Classical Statistics

names oftenwork. For example, here it is okay towritealt="g" to get the one-sided,
greater than, alternative.
The next output is the 95 percent confidence interval for the true mean. You can

think of it as defining a set of hypothetical mean values, such that if they were used
as values for your null hypothesis (instead of 23.2), they would lead to a p-value of
0.05 or greater (failure to reject the null). You can specify a different confidence level
with the conf.level argument. For example, conf.level=.99 will give you a
99 percent interval.
The final bit of output is the mean value from your sample. It is the best estimate

for the true mean. Note that you are not testing the data. You are testing a hypothesis
about some hypothetical value using your data.
To summarize, in classical statistical inference, you state a hypothesis that, for

example, the population mean has a value equal to μ0. You then use your data to
see if there is evidence to reject it. The evidence is summarized as a p-value. A p-value
less than 0.15 is taken as suggestive but inconclusive evidence that your hypothesis is
wrong, while a p-value less than 0.01 is convincing evidence you are wrong.The larger
the value of |t|, the smaller the p-value.

3.4 WILCOXON SIGNED-RANK TEST

Even if you cannot assume your data are sampled from anormal distribution, the t-test
will provide a robust inference concerning the population mean. By robust we mean
that the test results are not overly sensitive to departures from normally, especially in
large samples. Keep inmind that the assumption of normality is about the distribution
of the population of values, not just the sample you have.
The Wilcoxon signed-rank test does not require you to make the assumption of

normally. First, the hypothesized value (μ0) is subtracted from each observation.
Next, absolute values of each difference is taken and sorted from smallest to largest.
Ranks are assigned to each difference according to the sorting with the smallest dif-
ference given a rank of one. Then, the set of absolute magnitudes of the differences
are ranked. Ranking is done by ordering from lowest to highest all magnitudes and
counting the number of magnitudes with this value or lower. The lowest magnitude
gets a rank of one.
The function rank is used to obtain ranks from a set of values. For example, type

> rank(c(2.1, 5.3, 1.7, 1.9))

[1] 3 4 1 2

The function returns the rankswith each value assigned a ranking from lowest to high-
est. Here the value of 2.1 in the first position of the data vector is ranked third and the
value of 1.7 in the fourth position is ranked one.
Returning to your SST data, to see the ranks of the first 18 differences, type

> x = sst - 23.2

> r = rank(abs(x))

> r[1:18]
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[1] 156.0 157.0 158.0 159.0 160.0 34.0 112.0 124.0

[9] 91.0 102.0 11.0 147.0 150.0 37.0 96.0 3.5

[17] 77.0 20.0

This says there are 156 years that have a difference (absolute value) less than or equal
to the first year’s SST value. By default ties are handled by averaging the ranks, so for
an even number of ties, the rank are expressed as a fractional half, otherwise they are
a whole number.
The test statistic (V) is the sum of the ranks corresponding to the values that are

above the hypothesized mean

> sum(r[x > 0], na.rm=TRUE)

[1] 4224

Assuming only that the distribution is symmetric aroundμ0, the test statistic cor-
responds to selecting each rank from 1 to n with a probability of 10.5 and calculating
the sum. The distribution of the test statistic can be calculated exactly, but becomes
computationally prohibitive for large samples. For large samples, the distribution is
approximately normal.
The application of the nonparametric Wilcoxon signed-rank test in R is done in

the same way as the t-test. You specify the data values in the first argument and the
hypothesized population mean in the second argument.

> wilcox.test(sst, mu=23.2)

Wilcoxon signed rank test with continuity

correction

data: sst

V = 4170, p-value = 0.001189

alternative hypothesis: true location is not equal

to 23.2

The p-value of 0.0012 indicates moderate evidence against the null hypothesis, which
is somewhat greater evidence than that with the t-test.
There is less output as there is no parameter estimate and no confidence limits,

although it is possible under some assumptions to define a location measure and con-
fidence intervals for it (Dalgaard, 2002). The continuity correction refers to a small
adjustment to the test statistic when approximating the discrete ranks with a contin-
uous (normal) distribution. Note that the test statistic is slightly different than what
you calculated preiviously. See the help file for additional details.
Although a nonparametric alternative to a parametric test can be valuable, caution

is advised. If the assumptions aremet, then the t- test will bemore efficient by about 5
percent relative to the nonparametricWilcoxon test. That is, for a given sample size,
the t-test better maximizes the probability that the test will reject the null hypothesis
when it is false. That is, the t-test has more power than the Wilcoxon test. However,
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in the presence of outliers, the nonparametric Wilcoxon test will less likely indicate
spurious significance compared with the parametric t-test.
The Wilcoxon test has problems when there are ties in the ranks for small sam-

ples. By default (if exact is not specified), an exact p-value is computed if the samples
contain less than 50 values and there are no ties. Otherwise a normal approximation
is used.

3.5 TWO-SAMPLE TEST

It is often useful to compare two samples of climate data. For instance, you might
be interested in examining whether El Niño influences hurricane rainfall. Here you
would create two samples with one sample containing hurricane rainfall during years
denoted asElNiño, and the other sample containinghurricane rainfall during all other
years.
The two-sample t-test is used to test the hypothesis that two samples come

from distributions with the same population mean. The theory is the same as that
employed in the one-sample test. Vectors are now doubly indexed (x1,1, . . . ,x1,n1
and x2,1, . . . ,x2,n2 ). The first index identifies the sample and the second identifies the
case. The assumption is that the values follow normal distributions N(μ1,σ 2

1 ) and
N(μ2,σ 2

2 ), and your interest is to test the null hypothesisμ1 =μ2. You calculate the
t-statistic as

t =
x̄1 − x̄2√

s.e.(x̄1)2+ s.e.(x̄2)2
(3.11)

where the denominator is the standard error of the difference in means and s.e.(x̄i)=
si/

√ni. If you assume the two samples have the same variance (s21 = s22), then you
calculate the s.e.(x̄)s using a single value for s based on the standard deviation of all
values over both samples. Under the null hypothesis that the populationmeans are the
same, the t-statistic will follow a t-distribution with n1+ n2 − 2 degrees of freedom.
If you do not assume equal variance, the t-statistic is approximated by a

t-distribution after adjusting the degrees of freedom by the Welch procedure. By
default, the function uses the Welch procedure resulting in a noninteger degrees of
freedom. Regardless of the adjustment, the two-sample test will usually give about the
same result unless the sample sizes and the standard deviations are quite different.
As an example, suppose you are interested in whether the June NAO values have

mean values that are different depending on hurricane activity along the Gulf coast
later in the year. First create two samples of NAO values. The first sample contains
June NAO values in years with no Gulf hurricanes and the second sample contains
June NAO values in years with at least two Gulf hurricanes. This is done using the
subset function.

> nao.s1 = subset(nao, H$G == 0)

> nao.s2 = subset(nao, H$G >= 2)
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You then summarize the two sets of values with the mean, standard deviation, and
sample size.

> mean(nao.s1); sd(nao.s1); length(nao.s1)

[1] -0.277

[1] 1.51

[1] 80

> mean(nao.s2); sd(nao.s2); length(nao.s2)

[1] -1.06

[1] 1.03

[1] 22

The meanNAO value is larger during inactive years, but is it significantly larger? The
standard deviation is also larger and so is the sample size.
Your null hypothesis is that the populationmean of June NAO values during active

Gulf years is equal to the population mean of June NAO values during inactive years.
The test is performed with the t.test function with the two data vectors as the two
arguments. By default, the function uses theWelch procedure.

> t.test(nao.s1, nao.s2)

Welch Two Sample t-test

data: nao.s1 and nao.s2

t = 2.82, df = 48.7, p-value = 0.007015

alternative hypothesis: true difference in means is not

equal to 0

95 percent confidence interval:

0.223 1.337

sample estimates:

mean of x mean of y

-0.277 -1.057

The output is similar to that from the one-sample test provided earlier. The type
of test and the data objects are given in the preamble. The value of the t-statistic, the
degrees of freedom, and the p-value follow.
Here you find a t-statistic of 2.815. Assuming that the null hypothesis of no differ-

ence in population means is correct, this t value (or a value larger in magnitude) has
a probability 0.007 of occurring by chance given a t-distribution with 48.67 degrees
of freedom. Thus, there is compelling evidence that June NAO values are different
between the two samples.
As with the one-sample test, the alternative hypothesis, which is that the true dif-

ference in means is not equal to zero, is stated as part of the output. This is the most
common alternative in these situations.
The confidence interval (CI) refers to the difference in sample means (mean

from sample 1 minus mean from sample 2). So you state that the difference in
sample means is 0.78 [(0.22, 1.34), 95% CI]. The interval does not include zero
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consistent with the conclusion from the test statistic and the corresponding p-value of
compelling evidence against the null hypothesis (less than the 5% significance level).
If you are willing to assume the variances are equal (for example, both samples

come from the same population), you can specify the argument var.equal=T. In
this case, the number of degrees of freedom is a whole number, the p-value is larger,
and the confidence interval is wider.

3.6 STATISTICAL FORMULA

Instead of creating subsets of the object nao based on values in the object H, you can
create a data frame with two parallel columns. Include all values for the NAO in one
column and the result of a logical operation on Gulf hurricane activity in a separate
column.

> gulf = H$G > 1

> nao.df = data.frame(nao, gulf)

> tail(nao.df)

nao gulf

155 -1.00 TRUE

156 -0.41 FALSE

157 -3.34 FALSE

158 -2.05 TRUE

159 -3.05 FALSE

160 -2.40 FALSE

This displays the NAO values and whether or not there was two or more Gulf
hurricanes in corresponding years.
The goal is to see whether there is a shift in the level of the NAO between the

two groups of hurricane activity years (TRUE and FALSE). Here the groups are years
with two or more Gulf hurricanes (TRUE) and years with one or fewer hurricanes
(FALSE).
With this setup, you specify a two-sample t-test using the tilde (˜) operator as

> t.test(nao ˜ gulf, data=nao.df)

Welch Two Sample t-test

data: nao by gulf

t = 3.1, df = 36, p-value = 0.00373

alternative hypothesis: true difference in means is not

equal to 0

95 percent confidence interval:

0.271 1.293

sample estimates:

mean in group FALSE mean in group TRUE

-0.275 -1.057
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The object to the left of the tilde is the variable you want to test and the object to the
right is the variable used for testing. The tilde is read as “described by” or “conditioned
on.” That is, the June NAO values are described byGulf coast hurricane activity. This
is how statistical models are specified in R. You will see this model structure through-
out the book. Note that by using the data=nao.df, you can refer to the column
vectors in the data frame by name in the model formula.
The conclusion is the same. Years of high and lowGulf hurricane activity appear to

be presaged by June NAO values that are significantly different. The output is essen-
tially the same although the group names are taken from the output of the logical
operation. Here FALSE refers to inactive years.

3.7 TWO-SAMPLE WILCOXON TEST

If the normality assumption is suspect or sample sizes are small, you might prefer
a nonparametric test for differences in the mean. As with the one-sample Wilcoxon
test, the two-sample counterpart is based on replacing your data values by their cor-
responding rank. This is done without regard to group. The test statistic W is then
computed as the sum of the ranks in one group.
The function is applied using the model structure as

Wilcoxon rank sum test with continuity

correction

data: nao by gulf

W = 2064, p-value = 0.006874

alternative hypothesis: true location shift is not

equal to 0

The results are similar to those found using the t-test and are interpreted as convinc-
ing evidence of a relationship between late spring NAO index values and hurricane
activity along the Gulf coast of the United States.

3.8 COMPARE VARIANCES

It is not necessary to assume equal variances when testing for differences in means.
Indeed, this is the default option with the t.test function. Yet your interest could
be whether the variability is changing. For instance, you might speculate that the
variability in hurricane activity will increase with global warming.
Note that the variance is strictly positive. Given two samples of data, the ratio

of variances will be unity if the variances are equal. Under the assumption of equal
population variance, the F-statistic, as the ratio of the sample variances, has an F-
distributionwith two parameters. The parameters are the two sample sizesminus one.
The F-distribution is positively skewed meaning the tail on the right is longer than

the tail on the left. Figure 3.6 shows the probability density for two F-distributions. A
larger sample size results in a density centered on one andmore symmetric.
The function var.test is called in the same way as the function t.test, but

performs an F test on the equating of the group variances.
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Figure 3.6 Probability density functions for an F-distribution.

> var.test(nao ˜ gulf, data=nao.df)

F test to compare two variances

data: nao by gulf

F = 2, num df = 137, denom df = 21, p-value =

0.06711

alternative hypothesis: true ratio of variances is not

equal to 1

95 percent confidence interval:

0.95 3.58

sample estimates:

ratio of variances

2

Results show an F-statistic of 2 with degrees of freedom equal to 137 and 21 resulting
in a p-value of 0.067 under the null hypothesis of equal variance. Themagnitude of the
p-value provides suggestive but inconclusive evidence of a difference in population
variance. Note that the 95 percent confidence interval on the F-statistic includes the
value of one as you would expect given the p-value.
The F-test is sensitive to departures from normality. Also, for small data sets, the

confidence interval will be quite wide (see Fig. 3.6) often requiring you to take the
assumption of equal variance as a matter of belief.

3.9 CORRELATION

Correlation extends the idea of comparing one variable in relation to another. Cor-
relation indicates the amount and the direction of association between two variables.
If hurricanes occur more often when the ocean is warmer, then you say that ocean
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temperature is positively correlatedwith hurricane incidence as one goes up, the other
goes up. If hurricanes occur less often when sun spots are numerous, then you say that
sun spots are inversely correlatedwith hurricane incidence.Meaning the two variables
go in opposite direction as one goes up, the other goes down.
A correlation coefficient is a symmetric scale-invariant measure of the correlation

between two variables. It is symmetric because the correlation between variables
x and y is the same as the correlation between variables y and x. It is scale-invariant
because the value does not depend on the units of either variable.
Correlation coefficients range from −1 to +1, where the extremes indicate per-

fect correlation and 0 means no correlation. The sign is negative when large values of
one variable are associated with small values of the other and positive if both tend to
be large or small together. Different metrics of correlation lead to different correla-
tion coefficients. Most common is Pearson’s product-moment correlation coefficient
followed by Spearman’s rank and Kendall’s τ .

3.9.1 Pearson’s Product-MomentCorrelation

Pearson’s product-moment correlation coefficient is derived from the bivariate nor-
mal distribution of two variables, where the theoretical correlation describes contour
ellipses about the two-dimensional densities. It is the workhorse of climatologi-
cal studies. If both variables are scaled to have unit variance, then a correlation of
zero corresponds to circular contours and a correlation of one corresponds to a line
segment.
Figure 3.7 shows two examples: one where the variables x and y have a small pos-

itive correlation and the other where they have a fairly large negative correlation.
The points are generated from a sample of bivariate normal values with a Pearson
product-moment correlation of 0.2 and −0.7. The contours enclose the 75 and 95
percent probability region for a bivariate normal distribution with mean of zero, unit
variances, and corresponding correlations.
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Figure 3.7 Scatter plots of correlated variables with (a) r = 0.2 and (b) r = −0.7.
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The Pearson correlation coefficient between x and y is

r(x,y)=
∑(xi − x̄)(yi − ȳ)√

∑(xi − x̄)2 ∑(yi − ȳ)2
(3.12)

ThePearson correlation is often called the “linear” correlation since the absolute value
of r will be one when there is a perfect linear relationship between xi and yi.
The function cor is used to compute the correlation between two ormore vectors.

For example, to get the linear correlation between the May and June values of the
NAO, type

> cor(NAO$May, NAO$Jun)

[1] 0.0368

The value indicates weak positive correlation.Note that the order of the vectors in the
function is irrelevant as r(x,y)= r(y,x). You can verify in this case by typing

> cor(NAO$May, NAO$Jun) == cor(NAO$Jun, NAO$May)

[1] TRUE

If there are missing values, the function will return NA. The argument
na.rm=TRUEworks for one-vector functions like mean, sd, max, and others to indi-
cate that missing values should be removed before computation. However, with cor
function there are additional ways to handle the missing values, so you need the use
argument. As an example, to handle the missing values in the SST data frame by
case-wise deletion, type

> cor(SST$Aug, SST$Sep, use="complete.obs")

[1] 0.944

Here the value indicates strong positive correlation between August and Septem-
ber SST.
This value of r estimated from the data is a random variable and is thus subject to

sampling variation. For instance, adding another year’s worth of data will result in an
r value that is somewhat different. Typically, your hypothesis is that the population
correlation is zero. As might be guessed from the differences in r, your conclusions
about this hypothesis will likely be different for the SST and NAO data.
You can ask the question differently. For example, in 1,000 samples of x and y each

of size 30 from a population with zero correlation, what is the largest value of r? You
answer this question using simulations by typing

> set.seed(3042)

> n = 30

> cc = numeric()

> for(i in 1:1000){

+ x = rnorm(n); y = rnorm(n)

+ cc[i] = cor(x, y)
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+ }

> mean(cc); max(cc)

[1] -0.0148

[1] 0.569

The variable n sets the sample size and you simulate 1,000 different correlation coeffi-
cients from different independent samples of x and y. The average correlation is close
to zero as expected, but the maximum correlation is quite large.
High correlation can arise by chance. Thus when you report a correlation coeffi-

cient, a CI on your estimate or a test of significance should be included. This is done
with the cor.test function. The test is based on transforming r to a statistic that
has a t-distribution using

t =
√

ν
r√

1− r2
(3.13)

where ν = n− 2 is the degrees of freedom and n is the sample size.
Returning to the NAO example, to obtain a confidence interval on the correlation

between theMay and June values of the NAO and a test of significance, type

> cor.test(NAO$May, NAO$Jun)

Pearson's product-moment correlation

data: NAO$May and NAO$Jun

t = 0.463, df = 158, p-value = 0.6439

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

-0.119 0.191

sample estimates:

cor

0.0368

The type of correlation and the data used in the test are output in the preamble. The
correlation of 0.037 (given as the last bit of output) is transformed to a t value of
0.463 with 158 degrees of freedom providing a 95 percent CI of [−0.119, 0.191].
This means that if the procedure used to estimate the CI was repeated 100 times, 95
of the intervals would contain the true correlation coefficient. The output also gives a
p-value of 0.644 as evidence in support of the null hypothesis of no correlation.
Repeat this example using the January and September values of SST. What is the

CI on the correlation estimate?Howwould you describe the evidence against the null
hypothesis of zero correlation in this case?

3.9.2 Spearman’s Rank andKendall’s τ Correlation

Inferences based on the Pearson correlation assume the variables are adequately
described by normal distributions. An alternative is Spearman’s rank (ρ) correlation,
which overcomes the effect of outliers and skewness by considering the rank of the
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data rather than the magnitude. The Spearman correlation coefficient is defined as
the Pearson correlation coefficient between the ranked variables.
The Pearson correlation is the default in the cor.test function. You change

this with the method argument. To obtain Spearman’s rank correlation and the
associated test of significance, type

> cor.test(H$G, H$FL, method="spearman")

Spearman's rank correlation rho

data: H$G and H$FL

S = 551867, p-value = 0.01524

alternative hypothesis: true rho is not equal to 0

sample estimates:

rho

0.192

The correlation is 0.192 with a p-value of 0.015,providing suggestive evidence against
the null hypothesis of no correlation.
Kendall’s τ is another alternative to Pearson correlation. It is based on counting

the number of concordant and discordant point pairs from your data. For two data
vectors x and y each of length n, a point at location i is given in two-dimensional space
as (xi,yi). A point pair is defined as [(xi,yi);(xj ,yj)] for i �= j.
A point pair is concordant if the difference in the x values is of the same sign as

the difference in the y values, otherwise it is discordant. The value of Kendall’s τ is
the number of concordant pairs minus the number of discordant pairs divided by the
total number of unique point pairs, which is n(n−1)/2where n is the sample size. For
a perfect correlation, either all point pairs are concordant or all pairs are discordant.
Under zero correlation, there are as many concordant pairs as discordant pairs.
Repeat the call to function cor.test on coastal hurricane activity, but now use

the kendallmethod and save the resulting estimate.

> x = cor.test(H$G, H$FL, method="kendall")

> tau.all = x$estimate

The correlation is 0.174 with a p-value of 0.015, again providing suggestive evidence
against the null hypothesis of no correlation.e

3.9.3 BootstrapConfidence Intervals

Kendall’s τ and Spearman’s rank correlations are computed without confidence
intervals. You should always report a CI. In this case, you use a procedure called
bootstrapping, which is a resampling technique.
The idea is to sample the values fromyour datawith replacement using thesample

function. The sample size is the size of your data. The bootshop sample is called a
replicate. You compute the statistic of interest using the values on your replicate. The
bootstrap value will be different than the value computed from your data because
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the replicate contains repeat and data values and not all data values are included.
You repeat the procedure many times collecting all the bootstrap statistic values.
You then use the quantile function to determine the lower and upper quantiles
corresponding to the 0.025 and 0.975 probabilities.
Bootstrapping is widely used for assigning measures of accuracy to sample esti-

mates (Efron and Tibshirani, 1986). The function boot from the package boot
generates bootstrap replicates of any statistic applied to your data. It has options for
parametric and nonparametric resampling.
For example, to implement a boothshop procedure for Kendall’s τ using data on

Florida andGulf coast hurricane frequencies, you first create a function as follows:

> mybootfun = function(x, i){

+ Gbs = x$G[i]

+ Fbs = x$FL[i]

+ return(cor.test(Gbs, Fbs,method="k")$est)

+ }

Your function has two variables: the data (x) and an index variable (i). Next you
generate 1,000 bootstrap samples and calculate the CIs by typing

> require(boot)

> tau.bs = boot(data=H, statistic=mybootfun, R=1000)

> ci = boot.ci(tau.bs, conf=.95)

The boot function must be run prior to running the boot.ci function. The result
is a 95 percent CI of (0.032, 0.314) about the estimated τ of 0.174.

3.9.4 Causation

If you compute the correlation between June SST and U.S. hurricane counts using
Kendall’s method, you find a positive value for τ of 0.151 with a p-value of 0.011
indicating suggestive, but inconclusive, evidence against the null hypothesis of no
correlation.
A positive correlation between oceanwarmth and hurricane activity does not prove

causality. Moreover, since the association is symmetric, it does not say that x causes
y any more than it says y causes x. This is why you frequently hear “correlation does
not equal causation.” The problem with this adage is that it ignores the fact that cor-
relation is needed for causation. It is necessary, but insufficient. When correlation is
properly interpreted, it is indispensable in the study of hurricanes and climate.
Your correlation results are more meaningful if you explain how the variables are

physically related. Particularlyif your explanation comes before you look at your data.
Studies showing a consistent correlation between two variables using different time
and space scales, and over different time periods and different regions, provide greater
evidence of an association than a single study. However, if youwant proof that a single
factor causes hurricanes, then correlation is not enough.
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3.10 LINEAR REGRESSION

Correlation is the most widely used statistic in climatology, but linear regression is
arguably the most important statistical model. When you say that variable x has a
linear relationship to variable y, you mean y= a+ bx, where a is y-intercept and b is
the slope of the line. You call x the independent variable and y the dependent variable
because the value of y depends on the value of x.
But in statistics, you do not assume these variables have a perfect linear relation-

ship. Instead, in describing the relationship between two random vectors xi and yi,
you add an error term (ε) to the equation such that

yi = α+βxi+ εi (3.14)

You assume the values εi are iidN(0,σ 2).
The slope of the line is the regression coefficient β , which is the increase in the

average value of y per unit change in x. The line intersects the y-axis at the intercept α.
The vector x is called the explanatory variable and the vector y is called the response
variable.
Equation 3.14 describes a regression of the variable y onto the variable x. This is

always the case. You regress your response variable onto your explanatory variable(s),
where the word “regression” refers to a model for the mean of the response variable.
The model consists of three parameters α, β , and σ 2. For a set of explanatory

and response values, the parameters are estimated using the method of least squares.
The method finds a set of α and β values that minimize the sum of squared residuals
given as

SSres =∑
i
[yi − (α+βxi)]2 (3.15)

The solution to this minimization is a set of equations given by

β̂ =
∑(xi − x̄)(yi − ȳ)

∑(xi − x̄)2
(3.16)

α̂ = ȳ− β̂ x̄ (3.17)

that define estimates for α and β . The residual variance is SSres/(n−2), where α̂ and
β̂ are used in Eq. 3.15.
The regression line is written as

ŷi = α̂+ β̂xi (3.18)

The method of least squares to determine the α̂ and β̂ values is performed by the
function lm (linear model). If you are interested in regressing the August values of
Atlantic SST onto the preceding January SST values, you type

> lm(SST$Aug ˜ SST$Jan)

Call:

lm(formula = SST$Aug ˜ SST$Jan)
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Coefficients:

(Intercept) SST$Jan

7.11 0.84

The argument to lm is a model formula where the tilde symbol (∼) as we have seen
is read as “described by.” Or to be more complete in this particular case, we state that
the August SST values are described by the January SST values using a linear regression
model. In this case, you have a single explanatory variable so the formula is simply y˜x
and you call the model simple linear regression. In the next section, you will see that
with two covariates the model is y˜x+z.
The response variable is the variable you are interested inmodeling. This is crucial.

Youmust decide which variable is your response variable before hard. Unlike correla-
tion, a regression of y onto x is not the same as a regression of x onto y. Your choice
depends on the question youwant to be answered. You get no guidance by examining
your data nor will R tell you. Here you choose August SST as the response since it
is natural to consider using information from an earlier month to predict what might
happen in a later month.
The output from lm includes a preamble of the call that includes the model struc-

ture and the data used. Parameter estimates are given in the table of coefficients. The
estimated intercept value (α̂) is given under (Intercept) and the estimated slope
value (β̂) underSST$Jan. The output allows you to state that the best-fitting straight
line (regression line) is defined as August SST = 7.11 + 0.84× January SST.
The units on the intercept parameter are the same as the units of the response vari-

able, here ◦C. The units on the slope parameter are the units of the response divided
by the units of the explanatory variable, here ◦C per ◦C. Thus you interpret the slope
value in this example as follows: for every 1◦C increase in January SST, the August
SST increases on average by 0.84◦C.
The slope and intercept values will deviate somewhat from the true values due

to sampling variation. One way to examine how much deviation is to take samples
from the data and, with each sample, use the lm function to determine the parame-
ter. The code below does this for the slope parameter using January SST values as the
explanatory variable and August SST values as the response.

> sl = numeric()

> for (i in 1:1000) {

+ id = sample(1:length(SST$Aug), replace=TRUE)

+ sl[i] = lm(SST$Aug[id] ˜ SST$Jan[id])$coef[2]

+ }

> round(quantile(sl), digits=2)

0% 25% 50% 75% 100%

0.52 0.78 0.83 0.89 1.06

Note, you sample from the set of row indices and use the same index for the January
and the August values. Results indicate that 50 percent of the slopes fall between the
values 0.78 and 0.89◦C per ◦C.
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Although illustrative, sampling is not really needed. Recall you calculated the
s.e.(x̄) from a single sample to describe the variability of the sample mean. You do
the same to calculate the standard error of the slope (and intercept) from a sample
of x and y values. These standard errors, denoted s.e.(β̂) and s.e.(α̂), are used for
inference and to compute CI.
Typically the key inference is a test of the null hypothesis that the population value

for the slope is zero. A zero slope implies that the line is horizontal and there is no
relationship between the response and explanatory variables. The test statistic in this
case is

t =
β̂

s.e.(β̂)
(3.19)

which follows a t distribution with n− 2 degrees of freedom if the true slope is zero.
Similarly you can test the null hypothesis that the intercept is zero, but this often has
little physical meaning because it typically involves an extrapolation outside the range
of your x values.
The value for the test statistic (t value) is not provided as part of the raw output

from the lm function. The result of lm is a model object. This is a key concept. In
Chapter 2, you encountered data objects. You created structured data vectors and
input data frames from a spreadsheet. The saved objects are listed in your working
session by typing objects(). Functions, like table, are applied to these objects to
extract information.
In the same way, a model object contains a lot of information. This information

is extracted using functions. An important extractor function is the summary. You
saw previously that applied to a data frame object, the summary function extracts
statistics about the values in each column.When applied to a model object, it extracts
information about the model.
For instance, to obtain the information about the regression model of August SST

onto January SST, type

> summary(lm(SST$Aug ˜ SST$Jan))

Call:

lm(formula = SST$Aug ˜ SST$Jan)

Residuals:

Min 1Q Median 3Q Max

-0.4773 -0.1390 -0.0089 0.1401 0.4928

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.1117 1.4597 4.87 2.7e-06

SST$Jan 0.8400 0.0765 10.98 < 2e-16

Residual standard error: 0.197 on 153 degrees of freedom

(5 observations deleted due to missingness)
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Multiple R-squared: 0.441, Adjusted R-squared: 0.437

F-statistic: 121 on 1 and 153 DF, p-value: <2e-16

The output includes the call function, summary of residuals, table of coefficients,
residual standard error, R2 values, and the F-statistic and the associated p-value. The
output starts with a repeat of the function call. This is useful if the object is saved and
examined later.
Summary statistics on the set of model residuals follow. A residual is the differ-

ence between the response value at a particular explanatory value and the modeled
value. Residuals are important in helping you diagnose how well your model fits the
data. The average of the residuals is zero by definition of least squares, so the median
should not be far from zero and the minimum andmaximum should roughly be equal
in absolute magnitude. This is true here for the first (1Q) and third (3Q) quartile
values.
Next, the table of coefficients shows the intercept and slope values as in the raw

output, but here the accompanying standard errors, t values, and p-values are also
provided. The output is in tabular formwith the each row corresponding to a separate
parameter. The first row is the intercept and the second row is the slope associated
with the explanatory variable (SST$Jan). The vector SST$Jan is the explanatory
variable and the slope of 0.84 is the amount of change in themean response associated
with a unit change in the explanatory variable.
The first labeled column is the sample estimate (Estimate), the second is the

standard error (Std. Error), the third is the t value (t value), and the fourth
is the p-value (Pr(>|t|))). Note that according to Eq. 3.19, the t value is the ratio
of the estimated value to its standard error. The p-value is the probability of finding
a t value as large or larger (in absolute value) by chance assuming the slope is zero.
Here the p-value on the January SST slope is less than 2×10−16, which is output in
exponential notation as 2e-16. This indicates a near-zero chance of no relationship
between January SST and August SST given your sample of data.
By default, symbols are placed to the right of the p-values as indicators of the level

of significance, and a line below the table provides the definition. Here we turned
them off using an argument in the options function. The p-value should always be
reported rather than simply providing a cateorical signifiance level.
Note that the interpretation of a p-value as evidence in support of the null hypoth-

esis is the same as the t-test you encountered earlier. Your job is to determine the null
hypothesis. In the context of regression, the assumption of no relationship between
the explanatory and response variables is typically your null hypothesis. Therefore,
a low p-value indicates evidence of a relationship between your explanatory and
response variables.
Continuing with the output, the residual standard error quantifies the variation of

the observed values about the regression line. It is computed as the square root of the
sumof the squared residuals divided by the square root of the degrees of freedom. The
degrees of freedom is the sample size minus the number of coefficients. It provides an
estimate of the model parameter σ .
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Next are the R-squared values. The “multiple R squared,” is the proportion of vari-
ation in the response variable that can be explained by the explanatory variable. So
here you state that themodel explains 44.1 percent of the variation in August SST val-
ues. With only a single explanatory variable (simple linear regression), the multiple R
squared is equal to the square of the Pearson correlation coefficient, which you verify
by typing

> cor(SST$Jan, SST$Aug, use="complete")ˆ2

[1] 0.441

The adjusted R squared (R̄2) is a modification to the multiple R squared for the
number of explanatory variables. The adjusted R squared increases only if the new
variable improves the model. It can be negative and will always be less than or equal
to the multiple R squared. It is defined as

R̄2 = 1− (1−R2)
n− 1

n− p− 1
(3.20)

where n is the sample size and p is the number of explanatory variables. In small
samples with many explanatory variables, the difference between R2 and R̄2 will
be large.
The final bit of output is related to an F test, which is a test concerning the entire

model. The output includes the F statistic, the degrees of freedom (in this case, two
of them), and the corresponding p-value as evidence in support of the null hypoth-
esis that the model has no explanatory power. In the case of simple regression, it is
equivalent to the test on the slope so it is only interesting when there is more than one
explanatory variable. Note that the F statistic is equal to the square of the t statistic,
which is true of any linear regression model with one explanatory variable.
Other extractor functions provide useful information about your model. The func-

tion resid takes a model object and extracts the vector of residual values. For
example, type

> lrm = lm(Aug ˜ Jan, data=SST)

> resid(lrm)[1:10]

6 7 8 9 10 11

-0.0629 -0.2690 0.0278 0.0892 -0.1426 0.2165

12 13 14 15

-0.3297 -0.2614 0.4356 -0.2032

First the model object is saved with name lrm. Here only the column names are
referenced in the model formula because you specify the data frame with the data
argument. Then the extractor function resid lists the residuals. Here using the
subset function, you list only the first 10 residuals.
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Similarly, the function fitted computes the mean response value for each value
of the explanatory variable. For example, type

> fitted(lrm)[1:10]

6 7 8 9 10 11 12 13 14 15

23.2 23.2 22.8 22.9 23.1 23.0 23.0 22.9 22.8 23.2

These fitted values lie along the regression line and are obtained by solving for ŷ in
Eq. 3.18.
Note that the residuals and fitted values are labeled with the row numbers of the

SST data frame. In particular, note that they do not contain rows 1 through 5, which
are missing in the response and explanatory variable columns.
Your model can be used to make predictions. The predict function is similar to

the fitted function but allows you to predict values of the response for arbitrary val-
ues of the explanatory variable. The caveat is that you need to specify the explanatory
values as a data frame using the newdata argument. For example, to make an SST
prediction for August given a January value of 19.4◦C, type

> predict(lrm,newdata=data.frame(Jan=19.4))

1

23.4

A note on terminology. The word “predictor” is the generic term for an explana-
tory variable in a statistical model. A further distinction is sometimes made between
covariates, which are continuous-valued predictors and factors, which can take on
only a few values that may or may not be ordered.
A prediction is not worth much without an estimate of uncertainty. Assuming

the model is correct, a predicted value from a statistical model has two sources of
uncertainty. One is the uncertainty about the mean of the response conditional on
the value of the explanatory variable. It is the precision with which the conditional
mean is known. It is known as a confidence interval. To obtain the CI on the predicted
value, type

> predict(lrm, data.frame(Jan=19.4), int="c")

fit lwr upr

1 23.4 23.3 23.5

The argument int="c" tells the function predict to provide a CI on the predicted
value. The output includes the predicted value in the column labeled fit and the
lower and upper confidence limits in the columns lwr and upr, respectively. By
default, the limits define the 95 percent CI. This can be changed with the level
argument.
The interpretation is the same as before.Given the data and themodel, there is a 95

percent chance that the interval defined by the limits will cover the true (population)
mean when the January SST value is 19.4◦C. The other source of uncertainty arises
from the distribution of a particular value given the conditional mean. That is, even if
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you know the conditional mean exactly, the distribution of particular values about the
mean will have a spread.
The prediction interval provides a bound on a set of new values from themodel that

contains both sources of uncertainty. As a consequence, for a given confidence level,
the prediction interval will always be wider than the CI. The prediction interval relies
on the assumption of normally distributed errors with a constant variance across the
values of the explanatory variable.
To obtain the prediction interval on the predicted value, type

> predict(lrm, data.frame(Jan=19.4), int="p")

fit lwr upr

1 23.4 23 23.8

Given the data and the model, there is a 95 percent chance that the interval defined
by these limits will cover any future values of August SST given that the January SST
value is 19.4◦C.t

3.11 MULTIPLE LINEAR REGRESSION

Multiple regression extends simple linear regression by allowing more than one
explanatory variable. Everything from simple regression carries over. Each additional
explanatory variable contributes a new term to the model. However, an issue now
arises because of possible relationships between the explanatory variables.
As an illustration, we continue with a model for predicting August SST values over

the North Atlantic using SST values from earlier months. Specifically, for this exam-
ple, you are interested in making predictions with the model at the end of March.
You have January, February, andMarch SST values plus Year as the set of explanatory
variables.
The first step is to plot your response and explanatory variables. This is done with

the pairs function. By including the panel.smooth function as the argument to
panel, a local smoother is used on the set of points that allows you to more easily
see possible relationships. Smoothing is discussed in more detail in Chapter 5. Here
you specify the August values (column 9 in SST) to be plotted in the first row (and
column) followed by year and then the January throughMarch values.

> pairs(SST[, c(9,1:4)], panel=panel.smooth)

The scatter plots are arranged in a two-dimensionalmatrix (Fig. 3.8). The response
variable is August SST and the four explanatory variables include Year, and the SST
values during January, February, andMarch. A locally weighted polynomial smoother
with a span of 67 percent of the points is used to draw the red lines.
The diagonal elements of the matrix are the variable labels. The plot in the first

row and second column is the August SST values on the vertical axis and the year on
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Figure 3.8 Scatter plot matrix of monthly SST values.

the horizontal axis. The plot in row column 3 is the August SST values on the ver-
tical axis and January SST values on the horizontal axis, and so on. Note, in the
lower left set of plots, the variables are the same except the axes are reversed, so
the plot in column 1 is August SST values on the horizontal axis and the year is on the
vertical axis.
The matrix of plots is useful in drawing attention to what explanatory variables

might be important in your model of the response variable. Here you see all relation-
ships are positive. Specifically, August SST values increase with increasing year and
increasing January throughMarch SST values. Based on these bivariate relationships,
you might expect that all four explanatory variables, with the exception of perhaps
Year, will be important in the model of August SST.
Importantly, the plots also reveal the relationships between the covariates. Here

you see a tight linear relationship between each month’s SST values. This warrants
attention as a model that includes all three SST will contain a large amount of redun-
dant information. Information contained in the February SST values is about the
same as the information contained in the January SST values, and the information
contained in theMarch SST values is about the same as the information contained in
the February SST values.
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Table 3.2 Coefficients of the multiple regression
model.

Estimate Std. Error t value Pr(> |t|)
(Intercept) 6.1749 1.3154 4.69 0.0000
Year 0.0007 0.0004 1.90 0.0597
Jan 0.1856 0.1667 1.11 0.2673
Feb −0.1174 0.2187 −0.54 0.5921
Mar 0.7649 0.1611 4.75 0.0000

To fit a multiple regression model to these data with August SST as the response
variable, type

> m1 = lm(Aug ˜ Year + Jan + Feb + Mar, data=SST)

Then to examine the model coefficients, type

> summary(m1)

The model coefficients and associated statistics are shown in Table 3.2. As
expected, March SST is positively related to August SST, and significantly so. Year
is also positively related to August SST. The Year term has a p value on its coef-
ficient that is marginally significant (suggestive, but inconclusive) against the null
hypothesis of a zero trend. However, you can see that the coefficient on January
SST is positive, but not statistically significant, and the coefficient on February SST is
negative.
From Figure 3.8 you can see that there is a positive relationship between Febru-

ary SST and August SST, so the fact that the relationship is negative in the context
of multiple regression indicates a problem. The problem stems from the correlation
between explanatory variables (multicollinearity). High correlation can result in an
unstablemodel because the standard errors on the coefficients are not estimated with
enough precision.
As long as two variables are not perfectly correlated estimation of the regression

coefficients is possible, but the estimates and standard errors become sensitive to even
the slightest change in the data.When variables are correlated at levels above 0.6. Prior
understanding of the partial correlation (here the correlation between February SST
and August SST controlling for March SST) may help argue in favor of retaining two
highly correlated explanatory variables, but in the usual case it is better to eliminate
the variable whose relationship with the response variable is harder to explain phys-
ically or to eliminate the variable that has the smaller correlation with the response
variable.
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Here February SST has a smaller correlation with August SST, so you remove it
and reestimate the coefficients. You create a new linear model object and summarize
it by typing

> m2 = lm(Aug ˜ Year + Jan + Mar, data=SST)

> summary(m2)

You see all the remaining explanatory variables have a positive relationship with the
response variable, consistent with their bivariate plots, but the coefficient on January
SST is not statistically significant.
Thus you need to try a third model with the insignificant term removed.

> m3 = lm(Aug ˜ Year + Mar, data=SST)

> summary(m3)

The model makes sense. August SST values are higher when March SST values are
higher. This relationship holds after accounting for the upward trend in August SST
values.
Note that the order of the explanatory variables on the right side of the ˜ does not

matter. That is, you get the same output by typing

> summary(lm(Aug ˜ Mar + Year, data=SST))

Note also that the multiple R-squared value is slightly lower in the final model with
fewer variables. This is always the case and is the reason why the R squared should not
be used for comparing models. Instead, use the adjusted R squred, which increases
only when a statistically sigificant variable is added to the model.
The final model is checked for adequacy by examining the distribution of model

residuals. The five-number summary of the residuals given as part of the summary
output gives you no reason to suspect the assumption of normally distributed resid-
uals. However, the residuals are likely to have some autocorrelation violating the
assumption of independence.We will revisit this topic in Chapter 5.

3.11.1 PredictorChoice

Suppose H is your variable of interest and X1, . . . ,Xp , a set of potential explana-
tory variables, are vectors of n observations. The problem of predictor selection
arises when you want to model the relationship between H and a subset of the
explanatory variables, but there is uncertainty about which subset to use. The situ-
ation is particularly interesting when p is large and the variables contain redundant
information.
You want a model that fits the data well and has small variance. The problem is

these two goals are in conflict. An additional predictor in a model will improve the fit
(reduce the bias), but will increase the variance due to a loss in the number of degrees
of freedom. This is known as the bias variance trade-off.

jelsner
Sticky Note
change to "significant"



Elsner: “03˙ELSNER˙CH03” — 2012/9/24 — 16:05 — page 74 — #42

74 Classical Statistics

A commonly used statistic that helps with this trade-off is called the Akaike
Information Criterion (AIC), given by

AIC= 2(p+ 1)+ n[ log (SSE/n)], (3.21)

where p is the number of predictors and SSE is the residual sum of squares. You
can compare the AIC values when each predictor is added or removed from a given
model. For example, if after adding a predictor, the AIC value for the model increases,
then the trade-off is in favor of the extra degree of freedom and against retaining the
predictor.
Returning to your original model for August SST, the model is saved in the object

m1. The drop1 function takes your regression model object and returns a table
showing the effects of dropping, in turn, each variable from the model. To see
this, type

> drop1(m1)

Single term deletions

Model:

Aug ˜ Year + Jan + Feb + Mar

Df Sum of Sq RSS AIC

<none> 4.61 -535

Year 1 0.111 4.72 -533

Jan 1 0.038 4.65 -536

Feb 1 0.009 4.62 -537

Mar 1 0.693 5.30 -515

Here the full model (all four covariates) has a residual sum of squares (RSS) of 4.61
(in the<none> row; none dropped). If you drop the Year variable, the RSS increases
to 4.72 (you add 0.11 to 4.61) and you gain one degree of freedom. That is too much
increase in RSS for the gain of only a single degree of freedom, thus the AIC increases
to 4.72 from 4.61. You conclude that Year is too important to drop from the model.
This is true of March SST, but not of January or February SST.
Therefore, to help you choose variables, you compare the AIC values for each vari-

able against the AIC value for the full model. If the AIC value is less than the AIC for
the full model, then the trade-off favors removing the variable from the model. If you
repeat the procedure after removing the January and February SST variables, you will
conclude that there is no statistical reason to make the model simpler.
Stepwise regression is a procedure for automating the drop1 functionality. It is

efficient in finding the best set of predictors. It can be done in three ways: forward
selection, backward deletion, or both. Each uses the AIC as a criterion for choosing or
deleting a variable and for stopping. To see how this works with your model, type

> step(m1)

The output is a series of tables showing the RSS and AIC values with successive
variables removed. The default method is backward deletion, which amounts to a
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successive application of the drop1 function. It is a good strategy to also try forward
selection methods to see if the results are the same. Too have greater confidence in
your finalmodel if results are the same using forward selection and backward deletion.

3.11.2 Cross-validation

A cross-validation is needed if your statistical model will be used to make actual
forecasts. Cross-validation is a procedure to assess how well your model will do
in forecasting the unknown future. In the case of independent hurricane seasons,
involves withholding a season’s worth of data, developing the model on the remain-
ing data, then using the model to predict data from the season that was withheld.
Note that if your model-building algorithm involves stepwise regression or machine
learning (Chapter 7), then the predictor selection component must be part of the
cross-validation. That is, after removing a season’s worth of data, you must run
your selection procedure and then make a single-season prediction using the final
model(s). And this needs to be done for each season removed.
The result of cross-validation is an estimate of out-of-sample error that accurately

estimates the average forecast error when the model is used in predicting the future.
The out-of-sample prediction error is then compared with the prediction error com-
puted out of sample using a simpler model. If the error is larger with the simpler
model, then your model is considered skillful. Note that the prediction error from
the simpler model, even if it is long-run climatology, also needs to be obtained using
cross-validation. More details on this important topic including some examples are
given in Chapter 7.
In this chapter we reviewed classical statistics with examples from hurricane clima-

tology. Topics included descriptive statistics, probability and distributions, one- and
two-sample tests, statistical formula in R, correlation, and regression. Next, we give an
introduction to Bayesian statistics.
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