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Abstract

Duration data obtained from a given stock of individuals can fail to observe those
with relatively short spells. The bias generated by this sampling scheme is known as
length-biased sampling because long spells are more likely to be sampled than short
spells. Accounting for this sample bias requires knowledge of the exact starting time
of each duration spell. Unfortunately, it is common in economic duration data to
have coarse measures for starting times, complicating the resolution of this sampling
bias. This paper investigates three alternatives for overcoming this coarseness by im-
puting interval-censored starting times. These three imputation procedures produce
estimates that are very close to the true parameter values and are substantially easier
and computationally simpler than using the exact likelihood function.
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1 Introduction

Duration data that measure the length of time that individuals spend in a certain state before
transition to another state is often at the center of applied studies in economics. For example,
the length of a employment spell before an individual moves to another job or before the
individual becomes unemployed is crucial to pin down key parameters in equilibrium search
models.1 When working with duration data it is necessary to account for the sampling
scheme used to collect these data in order to obtain consistent estimators. A commonly used
sampling procedure consists of including individuals in the sample who are currently in the
state of interest at certain point in time and follow their duration in the state of interest
from that point on. For example we only include individuals that are currently employed
in January 2010 and at this point we start following their employment spell. This sampling
scheme is known as stock sampling.2

Figure 1 illustrates the typical stock sampling scheme. On the sampling date, A, we
obtain information about the date each sampled individual started their current job, and
then we follow all sampled individuals over a fixed period of time. In the picture, individual
I1 started her job spell on date s1 and finished her job spell on date x1. As indicated in
the picture, the duration of employment of individual I1 is the sum of two components: (i)
the elapsed duration, e1 = (A − s1), and (ii) the residual duration, u1 = (x1 − A). Next,
notice in Figure 1 that individual I2 has not finished her job spell when we stop following
individuals at date Z. In this case, the duration of the employment spell of individual I2

is right censored. The elapsed and residual durations of individual I2 are e2 = (A − s2)
and u2 = (Z − A) respectively. Finally, individual I3 is not included in the sample since
she started and finished her employment spell before the sampling date A. This is because
individual I3 started and finished her employment spell before the sampling date A. This
feature of stock sampling is typically referred to as left truncation (Kalbfleisch and Prentice,
1980; Wooldridge, 2002), and the bias it generates as length-biased sampling because long
spells are more likely to be sampled than short spells (Kiefer, 1988; Lancaster, 1990).

In order to obtain consistent estimators with a stock sample, we need to incorporate in
the likelihood function the fact that long spells are sampled more often than short spells.
Let the duration of employment of individuals I1 and I2 be t1 and t2, respectively, where
ti = ei + ui for i = 1, 2. The likelihood function for this sample of two individuals is:

L =

(
f(t1)

1− F (e1)

)
×
(

1− F (t2)

1− F (e2)

)
(1)

where f is the p.d.f. and F is the c.d.f. of random variable T representing duration spells.
The denominator of each term in the likelihood is P (ti > ei) = 1−F (ei) and corrects for the

1The duration of job spells provide valuable information to identify parameters such as the arrival rate
of wage offers while employed and the exogenous destruction rate.

2Wooldridge (2002) refers to this scheme as stock sampling and this paper follows this convention. How-
ever, other authors use different denominations. For example, Kalbfleisch and Prentice (1980) refer to this
sampling scheme as delayed entry and Lancaster (1990) refers to it as observation over a fixed interval (see
chap. 8, sect. 3.1). Also, Lancaster (1990) and Murphy (1996) define stock sampling a scheme in which only
the elapsed duration of the individuals in the sample is observed, but there is no follow up of the individual
after the sampling date (see Lancaster, 1990, chap. 8, sect. 3.3).
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fact that long spells are sampled more often in stock sampling, and that short spells, such
as t3, are not included in the sample.

Figure 2 illustrates the stock-sampling scheme analyzed on this paper. Once again, let A
be the stock-sampling date and si be the spell’s starting date. Now, suppose that when we
ask sampled individuals about the starting date of their job we record the starting date in
two formats depending on when the job started. If the job started: (i) during the previous
calendar year then we record the exact starting date of the job, (ii) before the previous
calendar year then we only record the year when the job started. In Figure 2, the previous
calendar year is marked at time B. For individuals that started their job after B, such
as individual I2, the starting time s2 is observed exactly, and so their elapsed duration
e2 = A− s2 is also observed exactly. For individuals that started their job before B, such as
I1, the starting time s1 is not observed, only the interval [SL1 , S

R
1 ] containing s1 is observed,

and so the elapsed duration e1 is only known to be contained in the interval [EL
1 , E

R
1 , where

ER
1 = A − SL1 and EL

1 = A − SR1 . The contribution to the likelihood of individual I2 is
f(t2)/[1 − F (e2)], similar to the first term in equation (1). However, the contribution to
the likelihood of individual I1 is complicated by the fact that we do not know the elapsed
duration e1. As a result we cannot correct the bias introduced by stock sampling, that is,
since we do not know e1 we do not know the term [1− F (e1)] in the likelihood.3

The goal of this paper is to explore alternative methods for overcoming the coarseness
of information about e2. We perform a Monte Carlo analysis to gauge the properties of the
estimators. The interval-censored elapsed duration is imputed using: (a) the lower bound
of the interval containing the elapsed duration, (b) the upper bound of the interval, and (c)
the midpoint of the interval. The Monte Carlo analysis indicates that the three methods
produce estimates that are very close to the true parameter values, but using the midpoint
or the upper bound of the interval tend to perform better than using the lower bound. We
consider specifying the exact likelihood function under interval-censored elapsed durations,
however our findings suggest that the alternative of imputing the missing elapsed duration
have very good performance and is substantially simpler.

Section 2 provides some examples of stock sampling with interval-censored elapsed dura-
tions. Section 3 discusses the exact likelihood. Sections 4 and 5 discuss the imputation and
simulation procedures. Section 6 presents the results and Section 7 presents an empirical
application of our imputation procedure and concludes.

2 Examples of Stock Sampling with Interval-Censored Starting Times

In practice, the sampling scheme depicted in Figure 2 occurs when collecting job duration
data from surveys that are implemented as rotating panels. In these surveys, job duration

3Note that the problem arises because the elapsed duration is interval censored. If the residual duration
were interval censored we would not have any problem. Recall that the full spell of an individual is the sum
of the residual and the elapsed duration, that is ti = ui + ei. If the elapsed duration were observed exactly,
but the residual duration ui were interval censored, i.e. we only know that ui ∈ [UL

i , U
R
i ], the full spell would

be interval censored, e.g. ti ∈ [Li, Ri], where Li = UL
i + ei and Ri = UR

i + ei. In this case, the contribution
to the likelihood would be: [F (Ri) − F (Li)]/[1 − F (ei)], which can be easily implemented. However, when
the elapsed duration is interval censored we cannot find a term such as [1 − F (ei)] to correct for the bias
introduced by stock sampling, because ei is only known to be within some interval.
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data are mostly obtained from the stock of individuals who are already employed at the time
of the first interview and the starting time of the job is obtained as retrospective information.
We often only observe a coarse measure of the starting time for individuals that started
long time before the first interview. For instance, the National Survey of Occupation and
Employment from Mexico (ENOE) is a rotating panel in which individuals are visited five
times over the course of a year. Individuals that are employed at the time of the first visit
provide the exact starting date of their job only if it began in the previous calendar year,
otherwise they simply state the year the job began. The Monthly Employment Survey from
Brazil (PME) follows a similar structure, visiting individuals eight times over the course of
a year. In this survey, individuals provide the exact starting date in months if their current
job started within the last two years, otherwise they only provide the number of years they
have been employed in their current job.

Table I shows that a significant percentage of individuals in both the ENOE and PME
do not provide the exact date their current job began. Given the frequency of spells with
interval-censored starting times, they cannot be ignored. To deal with interval-censored
starting times we have two alternatives: (i) drop all observations with interval-censored
starting times or (ii) specify the exact likelihood. The first alternative is not ideal as it
can introduce a selection sample problem because from the sampled duration spells we are
systematically dropping those with longer duration. In Section 7, we provide an empirical
application that illustrates the problems of dropping duration spells with interval-censored
elapsed duration. The second alternative is explained in the next section.

3 Exact Likelihood

Consider a stock-sampling scheme where A represents the stock sampling date.4 Let T be
a random variable that represents the duration of some event and t a realization of T . The
density of T is given by f(t|x; θ) where x is a set of time-invariant covariates and θ is the
vector of parameters of interest characterizing the duration model. Let S be a random
variable representing the starting time of the event of interest and s a realization of S with
density k(s|x; η), where η is the vector of parameters characterizing the distribution of S. If
starting times are independent of the duration variable conditional on covariates x then the
joint density of T and S is given by g(t, s|x; θ, η) = f(t|x; θ)k(s|x; η).

Consider a duration spell where the starting time is not observed exactly but only the
interval [SL, SR] containing s is observed. The residual duration U is defined as U = T −
A+ S. Then, using the change of variable technique, it is straightforward to show that the

density of the residual duration U is given by h(u|x; θ, η) =
∫ SR

SL f(u+A− s|x; θ)k(s|x; η)ds.
Next, to account for stock sampling, recall that a duration spell t is observed if and only

if t > A − S so the probability that a spell with interval-censored starting time is included

in the sample is given by Pr{T > A−S|x} =
∫ SR

SL [1−F (A− s|x; θ)]k(s|x; η)ds, where F (·|·)
is the c.d.f. of T .

Finally, to account for right censoring suppose that after the sampling date individuals
in the stock sample are only followed during a fixed interval of time, C. If U > C the

4The discussion in this section follows the same pattern of exercise 20.8 of Wooldridge (2002).
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spell will be right-censored and the probability that the spell is right-censored is given by
Pr{U > C|x} = 1−

∫ C
0
h(u|x; θ, η)du.

Therefore contribution to the likelihood of a spell with interval-censored starting time is:

Li(θ, η|xi) =
h(ui|xi; θ, η)di

[
1−

∫ C
0
h(u|x; θ, η)du

](1−di)∫ SR

SL [1− F (A− s|x; θ)]k(s|x; η)ds
, (2)

where di is an indicator equal to 1 for completed spells and 0 for right-censored spells.
Hence, with knowledge of k(s|x; η) it is possible to estimate the vector of parameters

(θ, η). However, estimation is not trivial. In Appendix A we present the case of where
duration spells follow a Weibull distribution and starting times follow a Uniform distribution
over the interval that contains them. We attempted to maximize this likelihood function
however, even in this simple case we encountered frequent occurrences where portions of
the likelihood function would evaluate to 0, which made solving the optimization problem
impossible. In the following section we show that a simple imputation procedure produces
estimate of θ that are comparable to estimates of θ when the exact start time is know.

4 Imputing Starting Times

As in the previous section, let T be a random variable with density f(t|x; θ) representing the
duration of the event of interest, where x is a set of time-invariant covariates and θ is the
vector of parameters of interest characterizing the duration model. A realization of T from
a stock-sampling scheme is a duration spell t = e + u where e and u are the realizations of
the elapsed and residual duration, respectively.

Focusing on spells with interval-censored elapsed duration let ê be the imputed elapsed
duration. We explore three imputation methods: (a) the lower bound ê = EL, (b) the upper
bound ê = ER, and (c) the midpoint ê = (1/2) × (EL + ER). Next, suppose that, after
the stock-sampling date individuals are only followed during a fixed interval of time, C. If
u > C the spell is right-censored. The contribution to the likelihood of a spell with imputed
elapsed duration is given by:

Li(θ|xi) =
f(t̂i|xi; θ)di

[
1− F (êi + C|xi; θ)

](1−di)
1− F (êi|xi; θ)

(3)

where di is an indicator equal to 1 for completed spells and 0 for right-censored spells, êi is
the imputed elapsed duration, and t̂i = ui + êi is the imputed duration.

5 Data Simulation

We simulate 100 data sets of 1, 000 observations using a Weibull-gamma mixture with a
hazard function given by:

λ(t|x, ν) = µαtα−1ν, (4)
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where α is the measure of duration dependence; µ = exp{β0 +β1x} and x is a vector of time-
invariant covariates to account for observed heterogeneity; and the parameter ν represents
unobserved heterogeneity, which is assumed to follow a Gamma distribution with E(ν) = 1
and V (ν) = 1/δ. This implies that small(large) values of δ imply that a large(small) portion
of the variation in the duration variable is due to unobserved heterogeneity.5 To generate a
stock sample, the duration data are simulated as a renewal process as described in Lancaster
(1990) (see ch. 5 sec. 3) and its adaptation to our simulation is explained in Appendix B.

We choose six different parameter sets for the data generating process to account for
every combination of three cases of duration dependence and two cases of unobserved het-
erogeneity. For duration dependence we use α = 0.5 for negative, α = 1.5 for positive, and
α = 1 for no duration dependence. For unobserved heterogeneity we use 1/δ = 1/10000
for no unobserved heterogeneity and 1/δ = 1 for data with unobserved heterogeneity. The
parameter β0 is chosen such that the mean duration from the parameter sets without unob-
served heterogeneity matches the average duration in the ENOE (approximately 19 months),
and β1 = 1.

Only one covariate x is considered and it is held fixed across all simulated samples and
parameter sets. This covariate is drawn from a N(µx, σ

2
x). The mean of this distribution is

set to µx = 0, and its variance is set to σ2
x = 0.25. The choice of variance follows Baker and

Melino (2000): σ2
x is chosen so that the R2 from a regression of the simulated ln(t) on the

simulated x is similar to the R2 of a similar regression using the duration data and a set of
covariates from the ENOE.6

6 Simulation Results

The results from model estimations with imputed elapsed duration are provided in Table II.
Regardless of the parameter set all models are estimated using a Weibull-gamma mixture.
Table II is divided in two blocks. The top block considers parameterizations with no unob-
served heterogeneity and the bottom block with unobserved heterogeneity. Subsequent rows
display the average of the parameter estimates (and its standard deviation in parenthesis).
While all three choices for imputation produce estimates that are close to the true parame-
ter values both the upper bound (ER) and midpoint (EM) tend to preform better than the
lower bound EL. The results in Table II for parameter set 4 representing negative duration
dependence, present the higher challenge to recover the true parameters, however in most
cases, the average estimate is within one standard deviation of the true parameter.

Tables III and IV present the mean squared error (MSE) and the mean absolute deviation
(MAD) for the simulated data. The three imputation methods produce similar MSE and
MAD for the six parameter sets. The MSE for ER is usually the smallest all parameter sets.
The MAD shows a similar pattern. In all cases the MSE and MAD of ER is very close to
these measures for EM and EL.

5When δ grows indefinitely, the distribution of T converges to a Weibull distribution without unobserved
heterogeneity (see Cameron and Trivedi, 2005).

6The duration data from the ENOE contains some interval-censored spells. In order to fit this regression,
these spells are imputed as t̃i = Li +u · (Ri−Li), where u is drawn from a uniform distribution in [0, 1] and
(Li, Ri] is the interval containing the actual duration.
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7 Empirical Application

In this section we present an empirical application using the ENOE survey from Mexico.
Motivated by the work of Cano-Urbina (2015) we use job duration in the informal sector
before making a transition to the formal sector.7

We estimate a Weibull-gamma mixture using two alternatives: (i) dropping job spells
with interval-censored elapsed duration, and (ii) using all job spells and imputing interval-
censored elapsed durations with the midpoint of the interval EM .8

We use years of education and age for the covariates. The results in Table V clearly
suggests different estimates for the duration model. When we drop job spells with interval-
censored elapsed duration the estimates suggest that unobserved heterogeneity is very im-
portant in generating variation in the data while including all observations and imputation
suggest a modest role for unobserved heterogeneity. Dropping these observations also suggest
that there is no duration dependence as the estimate of α contains 1 in the 95% confidence
interval, while including all observations and imputation suggest that there is negative dura-
tion dependence. Equally important are the differences in the estimated effects of education
and age. Finally, note that using all the sample and imputation provides estimates with
smaller standard errors as a result of having a larger sample size.

Figure 3 presents the plots of the unconditional hazards resulting from each of these
estimation samples. While both unconditional hazard functions present a similar shape,
dropping observations with interval-censored elapsed duration suggest a fastest drop in the
likelihood of making a transition from an informal-sector job to a formal-sector job. This
result is due to the higher role of unobserved heterogeneity suggested by the estimates with
this sample.

8 Conclusion

In this paper we study how different imputation choices for duration data with interval-
censored start times affects estimation results. This censoring mechanism occurs when ob-
taining duration data from a stock of individuals who are employed at the time of the
interview and the starting time of employment is obtained as retrospective information. All
three proposed choices for imputing duration (left endpoint, midpoint, or right endpoint) are
easily implemented and produce point estimates that are close to the true parameter values.

7The informal sector is composed of jobs that do not comply with some or all of the labor regulations.
The formal sector is composed by jobs that comply with all labor regulations.

8The ENOE also contains observations in which the residual duration is only known to be contained in an
interval. In these cases the duration of the spell ti is included within the interval [Li, Ri]. The contribution
of these observations to the likelihood function is [F (Ri) − F (Li)]/[1 − F (ei)]. See Footnote 3 for further
details.
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Figure 1: Typical Stock Sampling
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Figure 2: Stock Sampling with Interval-Censored Starting Time
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Figure 3: Webibull-Gamma Unconditional Hazard
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Table I: Elapsed Duration in the ENOE and PME

Elapsed Duration ENOE PME

Num. Obs. % Num. Obs. %

Exact 20,499 27.37 12,875 39.51

Interval-Censored 54,399 72.63 19,713 60.49

Total 74,898 32,588
Source: INEGI for ENOE, IBGE for PME. Data from the ENOE is for the first quarter of
2010. Data from PME is for January of 2012. The table only includes paid employees.
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Table V: Estimation Example from ENOE

Dropping Observations Using All Sample
with Interval-Censored and Imputed

Elapsed Duration Elapsed Duration
Education 0.1402∗∗∗ 0.0825∗∗∗

(0.0231) (0.0114)
Age 0.0236∗∗ 0.0162∗∗∗

(0.0105) (0.0059)
Constant -3.9862∗∗∗ -3.2865∗∗∗

(0.4379) (0.2156)
α 0.9677∗∗∗ 0.8388∗∗∗

(0.1046) (0.0345)
δ 1.6184∗∗ 18.2374∗

(0.7238) (10.4474)

Log-Likelihood -3,674.14 -7,002.43
Observations 4,121 8,336

Notes: Standard errors are in parenthesis. The sample only includes
males ages 16-30 with less than 12 years of education. We use all ENOE
samples from the first quarter of 2005 to the fourth quarter of 2010.
∗Significant at 10%, ∗∗Significant at 5%, ∗∗∗Significant at 1%.
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Appendix

A Weibull Distribution with Uniformly Distributed Starting Times

Consider the case in which the random variable T measuring duration follows a Weibull
distribution but we have some duration spells with interval-censored starting times, in which
case the starting time is only known to be contained in the interval [SL, SR]. Suppose a stock
sample is obtained at the sampling date A and individuals are only followed for a fixed period
of time C after the sampling date. Duration spells that have not finished by date A+C are
right censored.

Then, in this case, the contribution to the likelihood of a duration spell with interval-
censored starting time is given by equation (2), which is reproduced here for convenience:

Li(θ, η|xi) =
h(ui|xi; θ, η)di

[
Pr{U > C|x}

](1−di)
Pr{T > A− S|x}

=
h(ui|xi; θ, η)di

[
1−

∫ C
0
h(u|x; θ, η)du

](1−di)∫ SR

SL [1− F (A− s|x; θ)]k(s|x; η)ds
,

For the simple case of a Weibull distribution with uniformly distributed starting times the
components of the likelihood function are given by:

h(u|x; θ, η) =
1

SR − SL
[
exp(−µ(u+ A− SR)α)− exp(−µ(u+ A− SL)α)

]
Pr{U > C|x} = 1− µ−α

SR − SL
[ 1

α
γ
( 1

α
, µ(u+ A− SR)α

)
− 1

α
γ
( 1

α
, µ(u+ A− SL)α

)]
Pr{T > A− S|x} =

−µ−α

SR − SL
[ 1

α
γ
( 1

α
, µ(A− SR)α

)
− 1

α
γ
( 1

α
, µ(A− SL)α

)]
where γ(·, ·) is the lower incomplete gamma function, and α and µ = exp(β0 + β1x) are
the duration dependence and observed heterogeneity parameters of the Weibull distribution,
respectively. We attempted to maximize the likelihood function however, even in this simple
case we encountered frequent occurrences where portions of the likelihood function would
evaluate to 0, which made solving the optimization problem impossible. Specifically, this
occurs when calculating the difference between incomplete gamma functions, whenever the
second argument is sufficiently large the difference is calculated as 0. In this simple case,
we are ignoring the unobserved heterogeneity component. However, if we were to include
unobserved heterogeneity, the problem would only get more complicated.

B Renewal Process for Simulation of a Stock Sample

To generate a stock sample, the duration data are simulated as the renewal process depicted
in Figure 4. In Figure 4, a job spell is denoted tij where the subindex i identifies a type
of individuals with observable and unobservable characteristics (xi, νi), and the subindex j
identifies a particular member of type i. At each point in time, only one member of type i
is employed and when this member exits is replaced by another member of the same type i
that has the same characteristics (xi, νi). Hence, starting at time t = 0 for each type i we
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Figure 4: Simulation as a Renewal Process

-

6

t = 0

t21 t22 t23 t24

t11 t12 t13 t14 t15 t16 t17

A

e2 u2

e1 u1

t2 = e2 + u2

t1 = e1 + u1

have a sequence of job spells {ti1, ti2, ti3, . . .}. The job spells for each type are realizations of
a random variable Tij with cumulative distribution function F (t|xi, νi). For the particular
case of the Weibull-gamma mixture we use in our simulations the c.d.f. is given by:

F (t|xi, νi) = 1− exp{−(β0 + β1xi)t
ανi}. (5)

To generate a stock sample, we fix a time which is denoted t = A in Figure 4 and
represents the stock-sampling date. Figure 4 presents two hypothetical types. At the stock
sampling date, A, the first type is in its seventh generation, t17, while the second type is
in its fourth, t24. And so for these two types we include in the stock sample the job spells
t1 = t17 and t2 = t24. For these job spells in the sample the elapsed duration is ei and the
residual duration is ui for i = 1, 2.

For each sequence of generations i, the stock sample data generation uses the following
steps:

1. Draw xi from a N(µx, σ
2
x), to obtain µi = exp{β0 + β1xi}.

2. Draw νi from a gamma distribution with mean 1 and variance 1/δ.

3. Start with j = 1, compute the duration spell tij as follows:

(a) Draw Y from a Uniform[0,1].

(b) Compute tij using the inverse of the cumulative distribution function (5) as fol-
lows:

tij = F−1(Y |xi, νi) =

[
− ln(1− Y )

µiνi

]1/α

.

4. Compute the cumulative duration for the sequence of spells up to generation j:

T ij =

j∑
k=1

tik.

15



5. If T ij > A, then stop and go to 6, otherwise go back to 3, increase j by 1, and repeat
process.

6. Once the stock sampling date is reached, compute the residual, the elapsed, and the
complete duration, respectively, as:

ui = T ij − A

ei = T ij − u∗i
ti = e∗i + u∗i

This process is repeated for i = 1, 2, . . . , 1,000; that is, the sample size is N = 1,000.
Notice that the draw of the observed and unobserved heterogeneity components, xi and νi
respectively, is done only once for each sequence of generations of the population and stays
constant during the repeated draws from the uniform distribution Y .
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