
Solving RTM using Discrete Ordinate Method (DOM) 
and  

How it is implemented in MWRT 
 
 
The radiative transfer model 
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I(τ,µ) is radiance, may be convert to brightness temperature using Planck’s function. µ is 

the cosine of zenith angle. τ is optical depth (τ=0 at TOA, and increases downward). ω0 is 

single-scattering albedo. P is phase function; B is Planck’s function. The calculation of 

τ=σext∆z and ω0=σsca/σext may follow standard Mie theory. (absub.f, kcoef.f) 

In MWRT, P is assumed to follow Henyey-Greenstein equation, and is expended with 

Legendre polynomial (pl): 
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Asymmetry factor g is calculated following Mie theory (Book: Bohren and Huffman, 
1983, p120). (kcoef.f, hgpf.f) 
For azimuth-independent case (spheres, randomly-orientated irregular particles), the 
cosine of the scattering angle cosΘ can be denoted as µµ’ (Liou, 1974, JAS, Vol 31, 
p1473), so that 
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N is the number of terms to add. In DOM, N=2n-1 (2n is the stream number, see text 
below). To minimize the error associated with this cutoff, a δ-adjustment (scaling g, τ, 
and ω0) is applied (radsub.f). The δ-adjustment is well explained in Liou (1992, Book). 
 
Additionally, B(τ) in MWRT is assumed to be B0+B1τ, i.e., linearly varying from the top 
of the layer (B0) to the bottom of the layer. 
 
To solve the equation using DOM, first write the equation in discrete form (i=-n, n): 
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where µi and µj are the Gaussian points and aj  is the weights at µj. 2n is the “stream” 
number. For 4-stream model, n=2.  
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Then, (2) becomes 
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Because i=-n, n, we have 2n such equations. The problem becomes solving the 2n 
equations given boundary conditions. The solution should be “a linear combination of all 
solutions of the homogenous equation (without the last term)” plus one “special 
solution”. 
 
The solutions of the homogenous equations takes the form: W(µi)exp(-kτ), where k and 
W are the eigenvalues and eigenvectors. It has been proved that k is real and comes in 
pairs (+ and -). For n≤2, k and W may be evaluated analytically (strmeig.f, also refer Liou 
1992, Book). For higher streams, they must be evaluated numerically (refer Lapack 
routines in ~/com directory). A special solution for (3) can be written as q(µi)+B1τ, where 
q can be evaluated by solving  (pqsolver.f) 
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Now, we may write the solution of (3): 
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Lj can be determined using boundary condition and the continuity of radiances between 
layers. However, as mentioned earlier, k is in pairs with both positive and negative 
values. If τ is large, the term exp(-kτ) and exp(kτ) will be different by several orders, 
which poses a difficult challenge to solve the equation mathematically. To avoid this 
problem, we further let (j=1,2 for 4-stream) 
 
Lj=(Mj+Nj)/2 
L-j=(Mj-Nj)exp(-kjτ*)/2 
 
where τ* is the optical depth of an entire layer (Note τ is the optical depth at any location 
within the layer).  (4) is then written as (i=-2,-1,1,2 for 4-stream) 
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where 
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and kjs are positive eigenvalues. This way, no large exp terms will be in (5). The next 
task is to build the equations using boundary condition and continuity between layers to 
solve Mj and Nj.  
At the top of  the 1 st layer (counting layer from top down, i.e., first layer is at TOA): 
I(0,-µi)=I0. I0 is the Plank’s function corresponding to 3 K. That is (i=1, 2 for 4-stream), 
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Continuity between layer l and l+1: 
 
(upward) 
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(downward) 
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Lower boundary (surface) with Fresnel surface (I+=εIs+RI-): 
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          (9-1) 
where Is is the Planck's function with surface temperature Ts. Ri is the reflectivity (1-ε) at 
direction µi.  
 

Lower boundary with Lambertian surface ( ): ∫ −+=+
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(6)-(9) form a 2nL by 2nL matrix (L is number of layers) with 2nL unknowns (M and N) 
on the left and 2nL known values on the right. The equations can be solved by standard 
mathematical routines (Lapack). It is also noted that the left-hand matrix is a banded 
diagonal matrix, so memory and computation time may be saved if we use a routine 
specially designed for this type of matrix. Arranging and solving the equations are done 
in gettb.f. 
 
After solving (6)-(9), M and N are obtained. If we only want brightness temperatures at 
Gaussian quadrature points (µi), we may simply calculate them using (5). But usually 
what we need is the brightness temperature at a given direction µ (53° for example).  To 
calculate it, let’s go back to the formal solutions of the radiative transfer equation: 
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where µ and –µ denote upward and downward directions. J is the source function 
including both emission and scattering. From (2), we have 
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The I(τ,µi) in this equation are radiances from (5), i.e, radiances at Gaussian points. 
Substituting (5) into (11), we have 
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where  
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Substituting (12) in (10) and performing integration, it arrives: 
 

]]}/)(exp[1[]/)(exp[{

]}/)(exp[1{

]}/)(exp[)](){exp[()(

)]}/)((exp[)){exp(()(

]/)(exp[),(),(

***
1

*
0

2

1

**

2

1

**

**

µττµτµτττ

µττ

µττττµ

µττττµ

µττµτµτ

−−−−−−−−

−−−+

−−−−−−+

−+−−−++

−−+=+

∑

∑

=

=

B
Z

kHNM

kkGNM

II

j
jjjj

j
jjjjj

                (13) 

 
 
 

[ ]

[ ]
[ ]{ })/exp(1

)/exp(1

)]/(exp[)](){exp[()(

)/exp()exp()()(

)/exp(),0(),(

1

0

1

**

1

µτµτ
µτ

µττττµ

µττµ

µτµµτ

−−−+
−−+

+−−−−−−+

−−−−++

−−=−

∑

∑

=

=

B
Z

kkHNM

kGNM

II

n

j
jjjjj

n

j
jjjj

     (14) 

 
 
 
In our problem, we are only interested in I(τ*,-µ) and I(0,+µ), i.e, downward radiance at 
layer bottom and upward radiance at layer top. Note: downward radiance at top of layer l 
= downward radiance at bottom of layer l-1, and upward radiance at bottom of layer l = 
upward radiance at top of layer l+1. Again, layers are counted top-down. From (13) and 
(14), the two radiances are 
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For satellite observations, what we need is  Calculations may be performed in 
the following way: 
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Using top boundary condition (3 K), calculate from (16). Then 
using continuity condition , calculate . Repeat this 
procedure till is obtained.  
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At lower boundary, for Fresnel surface, , where 
ε(µ)=1-R(µ). 
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This time, using (15) calculate upward radiance in a similar fashion as above till 
is obtained, which is the satellite-received radiance. Brightness temperature is 

then derived using Planck’s function. All these calculations are done in gettb.f. 
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