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Abstract Florida, United States, government records provide a new resource for studying fire in
landscapes managed with prescribed fire. In Florida, most fire area (92%) is prescribed. Current satellite fire
products, which underpin most air pollution emission inventories, detect only 25% of burned area, which
alters airborne emissions and environmental impacts. Moreover, these satellite products can misdiagnose
spatiotemporal variability of fires. Overall fire area in Florida decreases during drought conditions as
prescribed fires are avoided, but satellite data do not reflect this pattern. This pattern is consistent with
prescribed fire successfully reducing overall fire risk and damages. Human management of prescribed fires
and fuels can, therefore, break the conventional link between drought and wildfire and play an important role
in mitigating rising fire risk in a changing climate. These results likely apply in other regions of the world with
similar fire regimes.

Plain Language Summary Wildfires and prescribed (i.e., controlled) fires are major sources of air
pollution, greenhouse gases, and aerosols. Accurately estimating emissions from fires is critical to
understanding their impacts on the environment and for designing sound fire management policies. We
show that for Florida, United States, current satellites—the primary tools for identifying the extent, location,
and time of these fires—dramatically underestimate the amount of fire, poorly identify its variation in space
and time and can mischaracterize its relationship to drought. Using government records of fires, where
available, can overcome some satellite shortcomings and provide a more accurate picture of fire extent and
variability. In Florida, these records show that land area consumed by fire decreases during drought
conditions due to less prescribed burning, but this pattern is not detected by satellites. Similar results may be
expected in other parts of the world with similar fire characteristics, including agricultural and savanna
regions of South America, Africa, Europe, and Asia. Using prescribed fire can help land managers adapt to
climate-driven changes in wildfire activity.

1. Introduction

Vegetation fires are major sources of air pollutants and climate-forcing agents that degrade air quality and
perturb regional and global climate (Al-Saadi et al., 2008; Bond et al., 2013; Brey et al., 2018; Dwyer et al.,
2000; Kaulfus et al., 2017; Randerson et al., 2012; Schroeder et al., 2016; Schultz et al., 2008; Soja et al.,
2006, 2011; Tosca et al., 2010; van der Werf et al., 2010). Satellite observations are critical for quantifying fires
and these impacts over most of the globe because ground-based fire reporting is uncommon and may be
incomplete (Giglio et al., 2009; Hawbaker et al., 2017b; Soja et al., 2006; van der Werf et al., 2017;
Wiedinmyer et al., 2010). Current satellite-based fire data sets have been evaluated extensively in landscapes
dominated by large wildfires, where high-quality ground-based data are available, and generally perform
well (Giglio et al., 2009; Randerson et al., 2012; Soja et al., 2006). However, small, prescribed fires contribute
a large fraction of global fire area (Randerson et al., 2012). There are limited data to assess satellite perfor-
mance in detecting these small fires (Amiro et al., 2001; Eidenshink et al., 2007; Kasischke et al., 2002; Laris,
2005; Marques et al., 2011; McCarty et al., 2009; NIFC, 2012; Parisien et al., 2006), but available information
suggests that many of them are undetected (Al-Saadi et al., 2008; Hu et al., 2016; Larkin et al., 2014; Soja
et al., 2009).

The southeastern United States burns more land area than the rest of the contiguous United States com-
bined, and Florida accounts for over 10% of all fire area in the United States (EPA, 2016; Melvin, 2015;
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Randerson et al., 2017). Most of these fires are prescribed fires for agriculture, forestry, conservation, and wild-
fire mitigation, and most of them are small, under 20 ha (0.02 km2) in size. These small, prescribed fires are
difficult to detect from space due to their short duration (hours or less), low intensity, and small size relative
to the resolution of many satellite instruments (Giglio et al., 2003; Hawbaker et al., 2008; Hu et al., 2016;
McCarty et al., 2009; Yokelson et al., 2011; Zhu et al., 2017). Unlike many other regions, however, records of
these prescribed fires are available from Florida and some other U.S. state governments. The southeastern
United States, therefore, provides a valuable test case for evaluating the performance of satellite-based fire
products in detecting small and prescribed fires, which are widespread globally. Florida’s fires also occur
on land cover types that host a large fraction of global fire activity (cropland, rangeland, savanna, grassland,
shrubland, and temperate forest; van der Werf et al., 2017).

Satellite sensors can detect fires from thermal infrared signatures of active fires, changes in surface reflec-
tance, which linger after the fire ceases, or both. All of these approaches face challenges in the southeastern
United States. Active fires may be undetected if they burn under clouds, under tree canopies (typical of silvi-
cultural fires), or when no satellite is overhead at the time of the fire (Cardoso et al., 2005; Giglio & Schroeder,
2007; Hawbaker et al., 2008; Prins et al., 1998). After a fire, vegetation can regrow quickly in the humid climate
of the southeastern United States and obscure reflectance signatures of burned area before the next cloud-
free satellite overpass (Picotte & Robertson, 2011). In Georgia, one common satellite product detected only
12% of fires and 60% of their total area (Hu et al., 2016, using Hazard Mapping System). For cropland fires,
which are important in the southeastern United States and elsewhere, another product detected only 13%
of burned area in Asia (Zhu et al., 2017, using Moderate Resolution Imaging Spectroradiometer, MODIS).
Both of those studies, however, were limited to one year, so broader evaluations are needed.

Our work presents insights from a comprehensive data set of open biomass fires, meaning prescribed fires
and wildfires, based on government reporting data in Florida. The data set provides a new tool for detecting
patterns and trends of open fires and for evaluating remotely sensed products. These results can be applied
to other regions of the world that have similar fire characteristics but lack comprehensive ground records.
Government records avoid the fire detection challenges of remote sensing but require a critical assessment
of their accuracy, which we do through comparisons to high-quality spatial fire records maintained by several
land management organizations in Florida (sections 2 and 3). We show that the government data represent
themagnitude and patterns of fires with similar or better accuracy to the common satellite-basedmethods in
this region. We then examine the spatiotemporal patterns of prescribed fires and wildfires, including their
relationship to climate variables (section 4), assess the ability of several common satellite-based fire products
to detect these patterns, and discuss the other regions across the world that would likely have similar results
to Florida (section 5).

2. Fire Data Sources and Methods

Prescribed fires in Florida are regulated by the Florida Forest Service (FFS), a state agency. Among the regula-
tions, fire managers in Florida are required to request and obtain an open burn authorization (OBA) from FFS
before starting a prescribed fire (Florida Statute, 2004). FFS generally approves OBA requests when weather
conditions allow safe burning, provide good smoke dispersion, minimize smoke impacts on sensitive areas
(roads, residential areas, hospitals, etc.), and when emergency response resources are available (Peterson
et al., 2018). Approved OBAs are saved in a database that provides a comprehensive historical record of pre-
scribed fire in Florida.

FFS provided us with anonymized OBA records of every authorized fire during 2004–2015. Each OBA
includes a point location (latitude and longitude), date, burn area requested, and purpose (silviculture,
agriculture, or land clearing for development). The FFS silviculture category includes commercial forestry
and wildland management fires in forest, savanna, and shrubland. Pile burns are also recorded but not
analyzed here. The accuracy of the FFS database requires evaluation because there are several potential
sources of error. For example, location inaccuracies can occur when fire managers provide FFS with
imprecise coordinates, a street address, or township and range within the Public Land Survey System,
which FFS then converts to latitude and longitude. Area inaccuracies can occur when managers cancel
a prescribed fire after an OBA is issued, or if part of the requested area contains ponds or other unburn-
able terrain. Since OBA requests are often approved in Florida, there is little incentive for land managers
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to deliberately underestimate burn area or to avoid requesting permits. Therefore, our expectation is that
OBAs may oveestimate burned area.

We evaluate the accuracy of the FFS database against comprehensive, high-quality prescribed fire records
from four large sites in Florida (Table S1 and Figure S1 in the supporting information): Tall Timbers
Research Station (TTRS, a private entity), Avon Park Air Force Range, Eglin Air Force Base, and Tyndall Air
Force Base. These four evaluation sites comprise 4% of Florida’s land area and 5% of the FFS-authorized fire
area during the study period. Each landowner’s fire records include the dates, areas, and fire perimeter poly-
gons of all prescribed fires that occurred during 2004–2015. The perimeters are either mapped by GPS after a
fire or are predetermined tracts that were previously mapped by GPS and are routinely burned as a block. At
TTRS, the burned area calculated from predetermined tracts differed from a subset of postfire measurements
using GPS by 5% or less, so both are sufficiently accurate for our purposes. We match each fire recorded by a
land manager with the nearest FFS OBA issued for the same day (Figure S2 and Text S1). The difference in
area and location between the OBA and known fire is considered error in the OBA database.

Wildfire information for Florida was obtained from the Fire Program Analysis Fire Occurrence Database (FPA
FOD; Short, 2014, 2017). The FPA FOD combines wildfire reports from federal, state, tribal, and local govern-
ments, making it the most comprehensive database available for Florida and the United States. Nevertheless,
it may omit some small wildfires, including fires on private land that were managed entirely by private
fire crews.

We compare the Florida OBA and FPA FOD wildfire records to several widely used satellite data sets: the
National Oceanic and Atmospheric Administration Hazard Mapping System (HMS; National Oceanic and
Atmospheric Administration, 2017; Ruminski et al., 2006), Landsat Burned Area Essential Climate Variable
(BAECV version 1.1; Hawbaker et al., 2017a, 2017b), and the Global Fire Emissions Database (GFED version
4.1s; Randerson et al., 2017). HMS uses thermal detections of active fires frommultiple satellites (1–4 km reso-
lution), while BAECV uses Landsat-series sensors (30-m resolution) to detect burn scars from changes in sur-
face reflectance. GFED combines both of these approaches using MODIS data (0.5-km sensor reported at
0.25°; Giglio et al., 2013; Randerson et al., 2012, 2017), classifying fires as small if they are detected by thermal
anomalies but not detected by the MODIS burned area product (MCD64A1; van der Werf et al., 2017). BAECV
and GFED both provide fire area, but HMS does not. For HMS, we assume an average size of 19 ha per fire
detection, which is the average size of HMS-detected fires in Georgia (Text S2; Hu et al., 2016). In addition,
we examine an agriculture fire product used in the 2014 National Emission Inventory (NEI; Pouliot et al.,
2017) and the Monitoring Trends in Burn Severity product (MTBS; USDA-FS & USGS, 2018), which includes
only large fires (>202 ha in the Eastern United States; Eidenshink et al., 2007). We also relate the fire variability
to the Palmer Drought Severity Index (PDSI; Heddinghaus & Sabol, 1991; Palmer, 1965), normalized against
data from 1931 to 1990, and the Keetch-Byram Drought Index (KBDI; Keetch & Byram, 1968). Both indices
are calculated from precipitation and air temperature, but KBDI is sensitive to subseasonal moisture changes
that affect fine fuels, while PDSI tracks prolonged moisture imbalance that persists for months to years and
affects deep soil moisture and deep-rooted plants.

3. Evaluation of Florida Open Burn Authorizations

The four study sites conducted 4,300 prescribed fires during 2004–2015. All but 198 can be matched with an
FFS OBA, meaning that the state database contains 95.4% of known prescribed fires. The median difference
between the area of a fire and its OBA ranges from�0.4% to�13% (0.1 to 11 ha, range across our four study
sites), so fires are typically a little smaller than requested. However, the range of error among individual fires is
�37% to +23% of the OBA area (±20%–25% median absolute deviation). Few fires (20%–28%) differ from
their OBA area bymore than a factor of two (Figure S3); most of those are smaller than authorized. Other mea-
sures of FFS OBA accuracy are summarized in Table S1 and Figure S3.

Themetrics above reflect the accuracy of the OBAs for a single fire on a single day. Accuracy of time-averaged
burn area is a better measure of the ability of OBAs to represent the overall extent and distribution of fires in
Florida. Accumulated over the study years, the actual fire area at the four study sites ranged from 14% less
than to 18% more than the OBA total (Table S1). Aggregated over all test sites and years, the OBA database
has a cumulative area error of 9% (i.e., 504,000 ha in OBAs versus 555,000 ha mapped as burned). Thus, the
OBA fire area has a typical error of 20%–40% for any given location and day, but the errors are under 20% at a
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single site when averaged over the study period, and less, around 10%, when averaged over large regions of
the state. For comparison, common satellite products may miss 40%–90% of fire area in the southeastern
United States or in other agricultural regions (Hu et al., 2016; Zhu et al., 2017).

OBA location errors were 0.7–0.8 km (median, Table S1) and fewer than 20% of OBAs were located more
than 2 km away from the actual fire (Figure S3). Although modest, these displacement errors mean that
most OBA point locations are outside the actual fire perimeter (50%–98% of fires, Table S1), particularly
for small fires and when a single OBA is requested for multiple fires, which is common at TTRS. As a
result, OBAs can represent the general distribution of fires within Florida, but not the exact location of

individual fires.

4. Current Status of Prescribed Fires, Wildfires, and
Their Drought Interactions

Having established the accuracy of FFS prescribed fire data, we com-
bine it with FPA FOD wildfire data to examine the patterns and varia-
bility of all open fires in Florida. Prescribed fires vastly exceed wildfires
in Florida by area and number, as seen in Figure 1 and Table 1. Over
the period 2004–2015, fires burned 9.9 ± 0.7 × 105 ha/year in Florida
(multiyear mean ± standard deviation), which is 7% of the state’s land
area each year. Wildfires burned only 8% of this fire area
(0.8 ± 0.6 × 105 ha/year). Of the prescribed fire types, silviculture fires
consumed the most area (5.5 ± 6.7 × 105 ha/year), burning 50% more
than agricultural fires. However, agricultural fires were much more
numerous (15,000 year�1 versus 6,000 year�1), reflecting their smaller
average size (Figure S4). Figure 1a shows that most silviculture and
land-clearing fires occur in northwest Florida, while agricultural fires
dominate south Florida especially around Lake Okeechobee, where
sugarcane agriculture is concentrated. Wildfires occur all across the
state, but their area is concentrated in south Florida.

Prescribed fires in Florida are much more extensive on weekdays
(Monday–Friday) than weekends (Figures 2a and S5). On Tuesday–
Thursday, fires burn 3,400 ha/day compared to 1,000–1,500 ha/day
on Saturday and Sunday. Monday and Friday are intermediate.

Figure 1. Mean annual burned area in Florida during 2004–2015 for (a) four fire types reported by FFS OBA (this work) and FPA FOD (Short, 2017), (b) total fires com-
pared to satellite products (GFED version 4.1s and Landsat BAECV version 1.1; van der Werf et al., 2017; Hawbaker et al., 2017a), and (c) the ratio of reported to
detected fire area. Panel a uses 0.1° resolution; panel b uses the 0.25° GFED grid to aid comparisons. Note the change in color scale at 5%. Lines are major highways
and dots represent major cities. Panel c shows the ratios for each grid cell in Florida. The black line and shading show the mean ratio, weighted by fire area, and its
95% confidence interval (Text S5). FFS OBA = Florida Forest Service open burn authorization; FPA PPOD = Fire Program Analysis Fire Occurrence Database;
GFED = Global Fire Emissions Database; BAECV = Burned Area Essential Climate Variable.

Table 1
Open Fire Characteristics for the Entire State of Florida During 2004–2015 Compared
With Satellite-Based Fire Productsa

Number (year�1) Area (103 ha/year)

Prescribed (FFS)
Agriculture 15,180 ± 1,380 354 ± 31
Silviculture 6,480 ± 710 553 ± 67
Land clearing 240 ± 50 3 ± 1
Total prescribed 21,900 ± 1,800 909 ± 88

Wildfire (FPA FOD) 3,270 ± 1,100 78 ± 56
Total 25,160 ± 1,400 987 ± 73

Satellite products
GFEDb — 268 ± 53
BAECVc — 235 ± 91
MTBSd 200 ± 160 189 ± 121
HMSe 14,440 ± 3,020 274 ± 57
NEI/HMS agriculturef — 92

Note. FFS = Florida Forest Service; FPA PPOD = Fire Program Analysis Fire
Occurrence Database; GFED = Global Fire Emissions Database;
BAECV = Burned Area Essential Climate Variable; MTBS = Monitoring Trends
in Burn Severity; HMS = Hazard Mapping System; NEI = National Emission
Inventory.
aValues are mean ± standard deviation across years bVersion 4.1s (van der
Werf et al., 2017) cVersion 1.1 (Hawbaker et al., 2017a) dUSDA-FS and
USGS (2018) eNOAA (2017). Area assumes an average size of 19 ha per detec-
tion. See Text S2 fData for 2014 only (Pouliot et al., 2017)
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Although this weekly cycle might be expected from labor customs, the NEI of air pollutants does not account
for it (Text S3 and Figure S5; EPA, 2015a, 2015b, 2016, 2017, 2018) nor do past regional studies mention it
(Larkin et al., 2014; Park et al., 2007; Schichtel et al., 2017; Schweizer et al., 2017; Zeng et al., 2008).
Moreover, the day-of-week effect seen here for prescribed fires in Florida is much stronger than what NEI
specifies for emissions in any state (see Text S3 and Figure S5; EPA, 2015a, 2015b, 2016, 2017, 2018).
Surrounding states likely have similar weekly cycles of fire emissions and including them could improve
future emission inventories. In contrast, wildfires in Florida show no weekly cycle (Figure 2a).

Prescribed fires and wildfires have different seasonal cycles (Figure 2b) and longer-term variability (Figures 2c
and 2d). Prescribed fires are usually most active in December through April, because managers and govern-
ment agencies prefer burning during cool and wet conditions for fire control and safety. Florida’s wildfires
peak in late spring, which is warmer and drier. On multiyear time scales, wildfire and prescribed fire area
anomalies—the residual variability after removing the median seasonal cycle—are anticorrelated
(R = �0.53, R2 = 0.28, p < 0.001), meaning that years with extensive wildfires have below-normal prescribed
fire area and vice versa.

Figure 2. Fire area in Florida (a) by day of week, (b) by seasonal cycle, (c) monthly over the study period, and (d) monthly
anomalies, with (e) drought indices for comparison. Prescribed fire data from Florida Forest Service (this work), wildfire
data from Fire Program Analysis Fire Occurrence Database (Short, 2017), and Global Fire Emissions Database (GFED) from
version 4.1s (van der Werf et al., 2017). Vertical lines in panels a and b show standard errors of the mean, which is smaller
than some plot symbols. Anomalies in panel d are calculated with respect to the median annual cycle, shown in panel
b, and smoothed with a 3-month running mean. Drought indices are the Palmer drought severity index (PDSI) and Keetch-
Byram drought index (KBDI), both averaged over Florida. Dry conditions are associated with negative PDSI and large
positive KBDI. The PDSI axis is reversed so that up indicates drought for both KBDI and PDSI.

10.1029/2018GL078679Geophysical Research Letters

NOWELL ET AL. 5



As seen in Figures 2c–2e, wildfire area increases during dry conditions (R2 = 0.28, 0.22 for area anomalies ver-
sus PDSI and KBDI drought indices, respectively, p < 0.001). In particular, a prolonged drought identified by
PDSI from 2006 to 2008 produced three of the four highest wildfire area anomalies in the record. This pattern
of wildfires increasing during drought is common around the world (Balch et al., 2015; Charlès, 2017; Prichard
et al., 2017; Westerling et al., 2006). The link between drought and prescribed fire, which has been studied
much less, follows a different pattern that is not detected by satellite burned area data sets (section 5). In
Florida, prescribed fires are less extensive during dry conditions. This decline during drought is driven by a
combination of land managers choosing not to burn as well as FFS denying authorizations. Prescribed fire
area is more strongly anticorrelated with short-term drought (KBDI R2 = 0.28, p < 0.001) than with long-term
drought (PDSI R2 = 0.14, p< 0.001), likely because KBDI, not PDSI, is used by FFS and others to predict fire risk.
This means that prescribed fires can be and are conducted during long-term drought, as long as sufficient
precipitation falls to occasionally moisten shallow soil and fine fuels.

Prescribed fire area dwarfs wildfire area in Florida by a factor of 12 during our study period (Table 1). As a
result, during drought conditions the total fire area decreases because the prescribed fire area decreases.
Figure 2d shows that the largest reductions (i.e., negative anomalies) in prescribed fires occurred during
the 2006 to 2008 drought and are as large, or larger, than the simultaneous wildfire increase. Conversely,
in wet years, like 2010 and 2013–2015, wildfires burned slightly less area than normal while prescribed fire
area increasedmuchmore. These patterns repeat throughout the data set. Overall, anomalies in total fire area
in Florida are uncorrelated with long-term drought (PDSI: R = 0.12, R2 = 0.01, p = 0.17) and anticorrelated with
short-term drought (KBDI: R = �0.34, R2 = 0.12, p < 0.001). Using the standardized precipitation index shows
the same relationships with drought on multiple time scales. A more detailed discussion can be found in
Text S4 (Hall & Brown, 2003; McKee et al., 1993; Vicente-Serrano et al., 2010). The lack of overall fire increase
during drought suggests that prescribed fire policy is succeeding on a large scale to reduce fire risks to peo-
ple and property in Florida.

Numerous case studies of individual wildfires show that prior prescribed fires can reduce the occurrence,
severity, and area of wildfire (Fernandes & Botelho, 2003 and references therein), but there is much less evi-
dence of whether current levels of prescribed fire are achieving their risk reduction goals on larger state or
regional scales (Addington et al., 2015; Prestemon et al., 2010). Wildfire risk assessments should recognize
the dominance of prescribed fire in the southeastern United States and account for the complex relation-
ships, shown here, between drought and different fire types. However, recent assessments have not
accounted for these features (Balch et al., 2017; Prestemon et al., 2016; Stephens et al., 2013). As a result, their
prediction of large increases in wildfire activity in the southeastern United States in future climate scenarios
may be overstated (Liu et al., 2013; Prestemon et al., 2016).

5. Evaluation of Satellite-Based Fire Area Products

The Florida fire data provide a new tool for evaluating the accuracy of satellite-based fire products over a
large region with multiple fire types that are common worldwide. Since the satellite sensors have resolutions
of 30 m to 4 km while OBAs are typically 0.5–1 km away from actual fires (section 3), the OBAs are not
expected to exactly overlap space-borne detections of the same individual fires. As a result, we conduct com-
parisons at coarser spatial resolution (Figure 1, Table 1).

Over 2004–2015, GFED detected fires covering 2.7 ± 0.5 × 105 ha/year in Florida, BAECV detected
2.4 ± 0.9 × 105 ha/year, and HMS detected 2.7 ± 0.6 × 105 ha/year. All of these are far less than the actual total
fire area of 9.9 ± 0.7 × 105 ha/year recorded by the FFS OBA and the FPA FOD (Table 1). Although there is
some uncertainty in the HMS burned area, the total is certainly less than actual fire area (Text S2). Large biases
also appear in specialized fire databases that rely on satellite data. For example, MTBS reported only
1.9 ± 1.2 × 105 ha/year across Florida; however, it is designed to map and track trends in large fires only
(Eidenshink et al., 2007) and thus excludes most Florida fires by design. The product that underpins NEI
2014 agricultural fire emissions detected 0.9 × 105 ha of crop and pasture fires in 2014 (Pouliot et al.,
2017), the only year reporting data, while the comparable number from FFS agricultural OBAs is
3.9 × 105 ha. Thus, the fire area recorded by FFS and FPA FOD is consistently about 4 times greater than
detected by any of these satellite products. Even accounting for 10–20% error in the government data
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(section 3), most fires and most fire area in Florida are not detected, mapped, or otherwise accounted
for by current satellites.

Figure 1b shows that the discrepancies between satellite-derived fire area and FFS OBA and FPA FOD vary
spatially across Florida. Both GFED and BAECV have obvious biases in northwest Florida, where prescribed
silvicultural fires are widespread, but they differ from the actual fire area by a factor of 1.5–6 across most
of the state (Figure S6). This detection bias is worst for small fires. Where small fires, as defined by GFED,
are more 30% of the detected fire area, the mean bias is a factor of 5, but the mean bias falls to 2.7 where
large fires dominate the detected fire area (Figure 1c and Text S5). The only region where GFED approaches
FFS OBA and FPA FOD is on the southern shore of Lake Okeechobee, where large sugar cane fields are burned
prior to harvest. BAECV, however, performs poorly in this region, due to a known weakness in detecting agri-
cultural fires (Hawbaker et al., 2017b). Both the maps and statewide totals are consistent with fires being
about four times greater than recognized from any of these satellites. Some past literature has treated
Landsat-derived fire area products as more accurate than products derived from lower-resolution sensors
(e.g., Boschetti et al., 2006; Giglio et al., 2009; Zhu et al., 2017), but the Florida results here caution that
high-resolution sensors do not guarantee unbiased burn area estimates.

Figure 2 evaluates the temporal variability of GFED over Florida against FFS and FPA FOD data and drought
indicators. Despite its overall bias, GFED reproduces the seasonal cycle of fire area, which is dominated by
prescribed burning, but the multiyear GFED area anomalies (Figure 2d) closely resemble wildfire anomalies
(R2 = 0.43, p < 0.001). In fact, GFED area anomalies are uncorrelated with both total fire anomalies
(R2 = 0.04, p = 0.01) and prescribed fire anomalies in Florida (R2 = 0.03, p = 0.05). For example, in the first half
of 2010, 2014, and 2015, GFED and wildfire areas were anomalously low, but total fire area was actually well
above average. These patterns are consistent with the better detection efficiency for large wildfires com-
pared to small prescribed fires, and it means that MODIS-based sensor products may misrepresent temporal
changes in fire and fire emissions in regions where humans and climate exert opposing controls on fires of
various sizes. Furthermore, the satellite products can give a misleading picture of the relationship between
fires and drought. GFED fire area in Florida is nearly constant or increases slightly during drought (KBDI:
R2 = 0.1, p < 0.001; PDSI: R2 = 0.01, p = 0.15; see Text S4 for standardized precipitation index), which differs
from the actual drought relationship (section 4). Thus, current satellites can misdiagnose the relationship
between fire and its human and environmental drivers due to their tendency to detect large wildfires and
underdetect smaller prescribed burns.

These satellite detection biases likely extend to other regions of the world with similar fire regimes to Florida.
The main fire types in Florida are agriculture, savanna, and shrubland, with some temperate forest and grass-
lands (Figures 1 and S7); satellites underdetect fire area for all of these. Similar fire types are found throughout
the world (Figure S7 and Text S5). Agricultural burning is widespread on every inhabited continent (Korontzi
et al., 2006), and frequent intentional burning is used in similarly structured woodlands and savannas within
parts of the U.S. Great Plains (Engle & Bidwell, 2001), South America (Cano & Leynaud, 2010; Harris et al., 2007;
Mistry, 1998), sub-Saharan Africa (Coetsee et al., 2010; Savadogo et al., 2007), and Australia (Price et al., 2012;
Price & Bradstock, 2010). These analogous areas account for about half of global fire emissions (Figure S7, van
der Werf et al., 2017). Additionally, Florida data suggest that only 20% of fire area is detected in places where
small fires, as defined by GFED, provide more than 30% of the fire area (Figure 1c). Since small fires exceed
this 30% threshold in GFED data across most of the world (Figure S7), that would significantly alter detected
fire area everywhere outside the boreal wildfire belt, western North America, Australia, and African savannas.
Overall, the Florida data suggest that a large fraction of global fire activity and extent is currently undetected.

6. Conclusions

The combination of FFS prescribed fire data and FPA FOD wildfire data provides the most comprehensive
record of fire available in Florida. Together, they report fire area of 9.9 ± 0.7 × 105 ha/year, with uncertainty
of 10%–20%. From these records, we show that multiple satellite-derived fire products underestimate burned
area in Florida by approximately a factor of 4, likely due to the small size and low intensity of agricultural and
silvicultural fires. Other states in the southeastern United States have similar fire regimes, so the biases docu-
mented here likely apply throughout the region and many other parts of the world with frequent prescribed
burning. Correcting these biases could significantly increase the contribution of open vegetation fires to
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global pollutant emissions and air quality impacts. However, updated emission estimates should also con-
sider the accuracy of fuel load, fuel consumption, and emission factors. In particular, fuel loads tend to
decrease as fires become more frequent, particularly in forests, which could partially offset changes to burn
area in an emission inventory.

Emission inventories, such as NEI, could also benefit from incorporating the strong day-of-week variation
seen in prescribed fire activity. The current approach of assuming uniform emissions throughout the week
underestimates peak smoke emission and exposure on weekdays and overestimates them on weekends.
Similar weekly patterns likely occur in other areas where prescribed fire is a common land management
practice. Given that very few states and regions currently track prescribed fire, our results underscore the
need for other areas to develop more comprehensive fire databases from burn authorizations and
wildfire reports.

Florida fires decrease in area during drought but this is not detected by current satellite products. This rela-
tionship between fire and drought in Florida is opposite to what has been reported elsewhere, such as the
Western United States, boreal zones, and the tropics (Abatzoglou & Kolden, 2013; Abatzoglou & Williams,
2016; Anderson et al., 2015; Aragão et al., 2018; Duncan et al., 2003; Randerson et al., 2012; Tosca et al.,
2010; van der Werf et al., 2004, 2010; Westerling et al., 2003, 2006). Florida, likely much of the southeastern
United States, and possibly other regions of the world follow a different pattern for several interlinked rea-
sons. Prescribed fires are dominant in Florida but are restricted during drought because safety and manage-
ment considerations favor burning during periods of normal rainfall. In addition, the widespread use of
prescribed fires over decades likely reduces the extent and severity of wildfires, limiting their growth during
drought. The Florida data therefore demonstrate that with extensive prescribed fire management, drought
does not inevitably increase wildfire activity. This result shows that prescribed fire and land management
can play an important role in managing drought and fire risks in the present day and under future climate
change. Moreover, it suggests that prescribed fires are successfully helping to mitigate the extent and
damages of wildfires during drought.
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Introduction  

This supplementary information contains: 

• Additional text describing our method for matching open burn authorizations (OBA) with 
test site fires, descriptions of fire emissions from the National Emission Inventory and the 
Hazard Mapping System, analysis of the standardized precipitation index (SPI), and 
identification of other regions in the world with similar fire regimes to Florida 

• Additional figures showing test site locations, OBA to test site matching method, 
discussion of the current state of open fires in Florida, and global fire emissions 

• Additional tables supporting the discussion of the current state of open burns in Florida 
and analysis of SPI  
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Text S1. Matching of OBA records with fires at test sites  
Each fire recorded by a land manager is matched with the closest open burn authorization 

(OBA) on the same day. Identifying the closest OBA requires calculating the distance between 
each fire, identified by its centroid, and all of the OBAs on that day. To accelerate the centroid 
calculation, burn perimeters provided by the land manager are circumscribed by a convex hull—
the polygon with minimum perimeter length that fully contains the burn area—then the centroid 
of the convex hull is determined. Distance calculations are carried out in ArcGIS 10.3.1 on the WGS 
84 geoid using the Minimum Bounding Geometry and Feature to Point tools to construct convex 
hulls and locate their centroids. After pairing known fires and their OBAs, the differences in fire 
location and fire area are used to quantify the error in each OBA. 

Matches are restricted to OBAs located on or within 1 km of the land manager’s property. 
Some land managers, especially TTRS, request a single authorization for several nearby small 
burns on the same day, so we allow multiple fires to match with a single OBA. The OBA location 
error is the distance between the OBA point location and the centroid of its matching fire, from 
land manager records. When multiple fires match to a single OBA, we consider the average 
distance to be the error.   

Figure S2 illustrates the OBA matching process on February 9, 2006 for Tyndall Air Force 
Base. On this day, fires were prescribed at eight different locations and two OBAs were issued in 
the area. Based on proximity, six burns were associated with one OBA and 2 burns with the other. 
For these events, the OBA location errors ranged from 2 km to 9 km. The OBAs authorized 24 ha 
while 1,740 ha were actually burned, giving an area error of 1716 ha (98 %). This is the largest 
discrepancy between requested and actual burned area in our dataset. Sect. 3 and Table S1 show 
that typical area errors are much smaller.  

Using this approach, all but 198 of the known 4,300 fires match with OBAs. If we allow 
matches up to 10 km outside the site boundaries, an additional 30 burns can be matched with 
OBAs, but none of the OBA performance metrics (Table S1, Fig. S3) change significantly, so only 
the 1 km results are reported here. 
 
Text S2. Calculating burned area from the Hazard Mapping System  

HMS is derived from the following sensors and satellites: Advanced Very High Resolution 
Radiometer (AVHRR) on board NOAA-15/18/19 and MetOp-02/B satellites, the Geostationary 
Operational Environmental Satellites (GOES), and the Moderate Resolution Imaging 
Spectroradiometer (MODIS) on NASA’s Terra and Aqua satellites (NOAA, 2017; Ruminski et al., 
2006). In addition, analysts can add fires that the algorithms may have missed. Since HMS does not 
provide fire size information, we calculate burned area using a mean fire size derived from HMS 
literature. Pouliot et al. (2017) assumed that each agricultural fire in HMS was the mean size of an 
agricultural field for the given state (24 ha in Florida). Hu et al. (2016) matched HMS fire detections 
(wild and prescribed) in Georgia to ground records; they identified 36,252 fires that collectively 
burned 674,760 ha, which gives a mean size of 19 ha for each HMS detection. Since Florida and 
Georgia have similar land cover and fire practices, we assume that HMS detections in Florida also 
average 19 ha. According to our own analysis of FFS OBAs and FPA FOD, the median fire size in 
Florida is 14 ha, which includes many small fires that HMS is unlikely to detect; the mean size in 
Florida is 39 ha, which is heavily influenced by a few exceptionally large wildfires. Therefore, 19 ha 
appears to be a reasonable size to apply to HMS fire detections in Florida.  

We estimate that HMS detects 2.7 ± 0.6 × 105 ha yr–1 of fire in Florida, compared to 9.9 ± 
0.7 × 105 ha yr–1 actual fire, which is a detection efficiency of 28%. We assumed an average fire size 
of 19 ha per HMS detection, which is reasonable in light of past literature described above. As an 
upper limit, if the mean size of detected fires were twice as large, which seems unlikely given the 
Georgia analysis by Hu et al. (2016), HMS would still be detecting only 56% of actual fire area. Hu et 
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al. (2016) reported that HMS detects 60% of fire area in Georgia, much better than the 28% we find 
in Florida. Although land use and fire regimes in the two states are similar, several factors may 
explain the different results. Our results are based on 12 years of comparison while Hu et al. used 
only one. That particular year, 2011, had a major drought (Fig. 2c-e) in which wildfires, which are 
more readily detected from space, comprise a larger fraction of total fires. Hu et al. also excluded 
fires whose locations in the state database were recorded as a town or county (22% of fires by 
number) and thus under-estimated total fire activity. Finally, Georgia permitting authorities 
appear to deny a larger fraction of burn requests than Florida, meaning that unpermitted and 
unrecorded fires may be more common in Georgia. All of these factors suggest that the 
undetected fraction of fires in the southeastern US is probably larger than inferred by Hu et al. 
(2016). 
 
Text S3. Agricultural fire emissions in the National Emission Inventory  

The National Emission Inventory (NEI), constructed by the US Environmental Protection 
Agency (EPA), provides trace gas and aerosol emissions hourly on a 12-km grid spanning the US 
for air quality applications (EPA, 2017). In the NEI, non-forest agricultural crop and rangeland fires 
are treated similarly and separate from wildfire and prescribed forest fires. Emissions from all of 
these open fires are based on fire area derived from a combination of satellite detections and 
reporting by federal, state, and tribal agencies (EPA, 2016, 2017). NEI2014 is described here, but 
NEI2011 was constructed similarly.  

EPA identifies agricultural fires from satellite detections filtered by land use (Pouliot et al., 
2017). That method underestimates agricultural fire area in Florida, as shown in Section 5 and 
Table 1. States may provide their own estimates of agricultural fire emissions to EPA, in which case 
that overrides the satellite-detected area in the NEI (EPA, 2016). For NEI2014, the Florida 
Department of Environmental Protection (FDEP) submitted agricultural fire emissions as the 
annual total for each county in Florida (H. Walsh, FDEP, personal communication). FDEP calculated 
those emissions from FFS OBA fire area combined with EPA-recommended emission factors (H. 
Walsh; EPA, 2017). As a result, the NEI2014 estimate of agricultural fire emissions in Florida is 
consistent with the fire area reported here and does not suffer from the satellite detection bias 
documented in this work.  

NEI2014 imposes a temporal profile on the annual total agricultural fire emissions 
provided by FDEP. The diurnal distribution assumes fires burn during daylight hours (Pouliot et al., 
2017). The day-of-week distribution differs by state. For NEI2014, only Iowa specified emissions for 
each day of the week and, for all other states, equal burning is assumed on all days of the week 
(EPA, 2017). For NEI2011, nine states, not including Florida, specified the burning distribution on 
each day of the week (B. Henderson, US EPA, personal communication). No weekly cycle is 
imposed for any state in the southeastern US in either NEI2011 or NEI2014. Of the states with a 
weekly cycle for agriculture emissions in any NEI version, one assumes no burning on weekends 
(Iowa) and all others assume equal burning Monday through Friday and around 30% reduction on 
weekends (EPA, 2018). The weekly distribution revealed through the FFS OBAs (for agriculture and 
silviculture with land clearing) differs substantially from those included in the 2014 NEI (Fig. S5). 
Specifically, Florida fires decrease much more than 30% on weekends, but not to zero, and are not 
constant during the work week. Imposing a weekly cycle, as seen in Figs. 2a and S5, on agriculture 
and other prescribed fire in Florida would provide a clear improvement in future emission 
inventories. Given the similarities of agricultural and labor practices between Florida and its 
neighboring states, the weekly distribution identified here for Florida likely applies to other 
southeast US states and perhaps more broadly.  
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Text S4. Relationship of fire and Standardized Precipitation Index  
 The Standardized Precipitation Index (SPI) measures meteorological drought, which is the 
excess or deficit of precipitation, relative to the historical local climate normal (McKee et al., 1993). 
Unlike many other drought indices, including KBDI and PDSI, SPI values can be calculated over 
multiple time scales, to reflect short-term (1 to 6 months) and long-term (12 months and longer) 
drought, and compared across dissimilar regions (Hall & Brown, 2003; McKee et al., 1993; Vicente-
Serrano et al., 2010). However, PDSI and KBDI have the advantage that they model soil moisture by 
accounting for precipitation and evaporation, thus they are more directly related to vegetation 
and fuel moisture. The Standardized Precipitation Evapotranspiration Index (SPEI) is similar to SPI, 
but additionally accounts for evapotranspiration (Vicente-Serrano et al., 2010).  

We obtained SPI (from the NCDC legacy servers; calibration period from 1931-1990) and 
SPEI (Vicente-Serrano et al., 2010; calibration period 1950-2010; http://spei.csic.es/, accessed 
6/12/2018) averages over the state of Florida (SPEI values are averages over the region cornered at 
24.25°N, 79.75°W and 30.75°N, 87.75°W). SPI and SPEI time series in Florida are strongly correlated 
at all time scales from 3 to 24 months (R > 0.9, p < 0.001), so we report results with SPI only. SPI 
ranges from -3 to 3, with negative values indicating drought conditions. 

Table S2 shows that wildfire area increases with drought, as measured by SPI, while 
prescribed fire area decreases with drought. These relationships are statistically significant (p < 
0.01) on all SPI time scales from 3 to 24 months, but relatively weaker at the longest time scale of 
24 months. Total fire area decreases during short-term drought (SPI-03) in a statistically significant 
way, although the relationship is weak (R = 0.17, p = 0.05). For droughts of 6 months and longer 
(SPI 06, 09, 12, and 24), total fire area still decreases during drought, but the relationship is not 
statistically significant (p > 0.05). We reported very similar relationships between fire and drought 
on different time scales in Section 4 with KBDI analogous to SPI-03 and PDSI analogous to SPI-06 
or SPI-12. Indeed, Table S2 shows that KBDI is most strongly correlated to SPI-03 (R = –0.71) and 
PDSI is most strongly correlated to SPI-12 (R = 0.87). In Section 5, using KBDI and PDSI, we reported 
that GFED fire area increases slightly, if at all, during drought. As seen in Table S2, the same weak 
relationship is obtained with SPI as the drought indicator (R ≈ 0.2 for SPI-03, 06, 09, and 12). 
 
 
Text S5. Regions of the world with similar fire characteristics to Florida  
 In Section 5 and Figure S6, we showed that multiple satellite fire datasets detect only 
about 25% of fire area in Florida. Here we identify other regions of the world where our results 
may also apply based on the similarity of their fire characteristics to Florida. We identify similar fire 
regimes based on the prevailing fire type in GFED and whether the fires are mostly large or small, 
as defined by GFED. GFED version 4.1s defines fires as small if they are detected as MODIS thermal 
anomalies (active fires) and not detected by the MODIS burned area product (MCD64A1; van der 
Werf et al., 2017). 
 Figure S7a shows the fraction of fire area in Florida that is detected by GFED as small fires. 
Over most of Florida, the small fire fraction exceeds 0.5, meaning that small fires burn more area 
than large fires. Comparison of this small fire fraction to the map of detection biases (Fig. S6) 
suggests that the bias is less in areas where GFED detects mainly large fires. To quantify the effect 
of fire size on detection bias in a way that can be extrapolated to other regions, Figure 1c shows 
the ratio of reported fire area (FFS + FPA FOD) to GFED-detected fire area, as a function of the 
GFED small fire fraction. Each point in the figure represents a GFED grid cell in Florida with 
reported and detected fire areas summed over the study years 2004-2015, then divided. The mean 
bias ratio, weighted by fire area, is calculated for each 0.1 increment of small fire fraction and the 
95% confidence intervals (CI) for the means are calculated through bootstrap resampling of the 
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data with replacement. Where small fires are 10% or less of the detected fire area, meaning most 
fires are large, the mean bias ratio is 2.7 (CI: 1.8-3.4). The mean bias increases as the small fire 
fraction rises, up to a bias of about 5 (CI: 3.2-7.7) where small fires account for more than 30% of 
the detected fire area. The 95% confidence intervals exclude a ratio of one for all values of small 
fire fraction, meaning that GFED under-estimates fire area in Florida regardless of which fire sizes 
dominate. These detection biases are almost certainly tied to fire characteristics and not the same 
everywhere in the globe. In particular, the biases are likely different in wildfire-dominated regions, 
like boreal forests and western North America, but GFED and other satellite fire products have 
been extensively evaluated there (Giglio et al., 2009; Randerson et al., 2012; Soja et al., 2006). 
Rather, the detection biases found in Florida are likely to apply in other regions of the world with 
prescribed agriculture fire and frequent (< 10 year return interval) intentional burning of 
woodlands, savannas, and shrublands. 

Fire area is underestimated by satellites across all of the fire types in Florida: agriculture, 
savanna, and shrubland with some temperate forest (Fig. S7a). GFED data show that these fire 
types are not only widespread globally, but also responsible for a large portion of global fuel 
consumption and emissions (Fig. S7c). Agriculture fires occur on every inhabited continents 
(Korontzi et al., 2006) and are particularly widespread in Europe, central Asia, China, and India. In 
Florida, agriculture fires dominate fire activity in the region south of Lake Okeechobee. The fire 
area in this region, as reported by FFS, is about two times larger than what is detected by GFED. 
However, the detection bias for other agriculture regions of the globe could be greater because 
agriculture fires in this part of Florida are mostly large, as defined by GFED, while agriculture fires 
in most of the world are small (Fig. S7b).  

Fires in the rest of Florida are a mixture of woodlands, pine savanna, shrubland, grassland, 
and rangeland, with some crops. In these ecosystems, fires are typically prescribed with return 
intervals under 10 years to mitigate wildfire risk by limiting fuel buildup and to promote 
biodiversity. Other regions where fires are prescribed with similar frequency in similar biomes 
include woodlands and savanna within the US Great Plains (Engle & Bidwell, 2001), the Cerrado, 
Chaco, and Caldenal of South America (Cano & Leynaud, 2010; Harris et al., 2007; Mistry, 1998), 
sub-Saharan African savannas (Coetsee et al., 2010; Savadogo et al., 2007), and semi-arid forests 
and savanna of Australia (Price et al., 2012; Price & Bradstock, 2010). Few accurate datasets of fire 
area have been available from these locations to test the accuracy of satellite fire products, so the 
similarity of their fire characteristics to Florida suggests that the satellite detection biases we have 
documented may apply there as well.  
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Figure S1. Evaluation sites: A) Eglin Air Force Base, B) Tyndall Air Force Base, C) Tall Timbers 
Research Station, and D) Avon Park Air Force Range.  
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Figure S2. Example of OBA matches for prescribed fires at Tyndall Air Force Base on February 9, 
2006. Yellow regions show areas burned on that day with black dots marking their centroids. Burn 
sites are linked (red lines) with the closest OBA issued on that date (red stars). Yellow dots show 
OBAs issued on other days. 
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Figure S3. Cumulative distribution function (CDF) of OBA errors for fire area (left) and location 
(right) at four test sites for 2004-2015. When multiple burns are matched with one OBA, the 
average distance is used. The median burn area for each site is given in the legend in parentheses. 
 
 

 
Figure S4. CDF of fire burned area for the entire state of Florida classified by type. All data are 
from FFS except wildfire, which is from FPA FOD (Short, 2014, 2017). The mean annual burned area 
associated with each type is given in the legend in parentheses. 
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Figure S5. Distribution of burned area by day of week for FFS OBA (agriculture and silviculture 
plus land clearing) as compared to the 2014 NEI. In the 2014 NEI, all states were assigned a uniform 
distribution except for Iowa, which specified that they have no weekend prescribed fire emissions. 
 
 
 
 



 
 

S10 
 

 
Figure S6. Mean bias of two satellite-based fire area products for 2004-2015: GFED and BAECV. 
Bias is shown as the mean ratio (FFS area)/(satellite-detected area) by year. Both comparisons are 
shown at the 0.25° GFED resolution. Note that the bias ratio values are capped at 10. For GFED, the 
maximum is 128 with 15% of the pixels having a bias ratio larger than 10. For BAECV, the 
maximum is 382 with around 5% of the pixels having a bias ratio larger than 10. Gray areas show 
where bias ratio is infinite because no fire was detected by the satellite product. 
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Figure S7. Fire size, type, and fuel consumption for Florida and the world, as reported by GFED: (a) 
the fraction of fire area detected as small fires (i.e. not detected by the MODIS burn area product) 
for Florida and (b) the world; (c) dry matter consumption by fire capped at 1.5 kg DM/m2/year. 
Outlines and text show regions where GFED classifies fuel consumption as mostly from agriculture 
(Ag), temperate forest (TF) or savanna, shrubland, and grassland (SSG), which are the main fire 
types in Florida. In Florida, TF are mainly pine savanna or flatwoods (Text S5). All results are 
averages over the study period of 2004-2015. 
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Table S1. Fire statistics and accuracy of Florida Forest Service Open Burn Authorization (OBA) 
database at four evaluation sites for 2004-2015. 
 

Sitea Avon Park AFR Eglin AFB TTRS Tyndall AFB Total 
Land area, ha 42,897 187,370 1,540 3,642 235,449 
Fire areab, ha 101,700 425,700 6,796 20,540 554,736 
Number of firesb 681 1458 2031 130 4,300 
      
OBA accuracy      

area error, individual firesc,d, % –0.9 ± 23.2 –6.5 ± 25.5 –12.7 ± 24.7 –0.4 ± 19.4 –4.3 ± 24.7 
area error, cumulatived,e, % 15.7 –13.5 –11.6 17.5 –9.2 
distance errorc, km 0.77 ± 0.46 0.65 ± 0.36 0.79 ± 0.35 0.71 ± 0.39 0.74 ± 0.38 
located inside perimeter, % 30 50 2 23 23 

a Abbreviations: AFR = Air Force Range, AFB = Air Force Base, TTRS = Tall Timbers Research Station. 
b Total for study period 2004-2015. 
c Median error ± median absolute error.  
d Actual fire area minus OBA area. Positive values indicate the fire area exceeded the OBA. 
e Accumulated over entire study period 2004-2015. 
 
 
 
 
 
 
 
 
 
Table S2. Correlation (R) of the standardized precipitation index (SPI) at various time scales with 
fire area anomalies and the PDSI and KBDI drought indicesa 
 

SPI period 
(months) 

Wildfire Area 
Anomaly 

Prescribed Fire Area 
Anomaly 

Total Fire 
Area Anomaly 

GFED Fire Area 
Anomaly PDSI KBDI 

SPI-03 -0.48*** 0.39*** 0.17** -0.21* 0.66*** -0.71*** 
SPI-06 -0.47*** 0.33*** 0.11 -0.17* 0.72*** -0.60*** 
SPI-09 -0.49*** 0.31*** 0.07 -0.22** 0.81*** -0.51*** 
SPI-12 -0.55*** 0.41*** 0.15* -0.21* 0.87*** -0.56*** 
SPI-24 -0.31*** 0.24*** 0.09 -0.01 0.71*** -0.45*** 

 
a Asterisk indicates statistical significance: *** for p < 0.01, **  for p < 0.05, * for p < 0.2. Since SPI decreases 
during drought, a negative correlation coefficient (R) means that the quantity increases during drought. 
PDSI also decreases during drought, while KBDI increases during drought. 
 
 
 
 
 
 
 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


