Methane Feedback on Atmospheric Chemistry: Methods, Models, and Mechanisms

Christopher D. Holmes

1Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida, USA

Abstract The atmospheric methane (CH₄) chemical feedback is a key process for understanding the behavior of atmospheric CH₄ and its environmental impact. This work reviews how the feedback is defined and used, then examines the meteorological, chemical, and emission factors that control the feedback strength. Geographical and temporal variations in the feedback are described and explained by HOₓ (HOₓ = OH + HO₂) production and partitioning. Different CH₄ boundary conditions used by models, however, make no meaningful difference to the feedback calculation. The strength of the CH₄ feedback depends on atmospheric composition, particularly the atmospheric CH₄ burden, and is therefore not constant. Sensitivity tests show that the feedback depends very weakly on temperature, insolation, water vapor, and emissions of NO. While the feedback strength has likely remained within 10% of its present value over the industrial era and likely will over the twenty-first century, neglecting these changes biases our understanding of CH₄ impacts. Most environmental consequences per kg of CH₄ emissions, including its global warming potential (GWP), scale with the perturbation time, which may have grown as much as 40% over the industrial era and continues to rise.

Plain Language Summary Methane emissions alter atmospheric chemistry in ways that amplify the impact of those emissions. This work examines the chemical and meteorological causes of that feedback. The feedback and environmental impacts of CH₄ emissions have likely strengthened over the historical era.

1. Introduction and Review
Methane (CH₄) is a major greenhouse gas; its emissions are responsible for about 1 W m⁻² of radiative forcing in 2011 (Myhre et al., 2013). Chemical oxidation of CH₄ in the atmosphere is therefore a critical climate process, removing one major greenhouse gas and producing several others: CO₂, H₂O, and O₃. Quantifying this process and how it responds to perturbations is a central task of atmospheric chemistry models. One important effect of CH₄ on atmospheric chemistry is controlling concentrations of tropospheric hydroxyl radicals (OH), a key oxidant in the atmosphere. CH₄ is removed from the atmosphere mainly by reacting with OH:

\[\text{CH}_4 + \text{OH} + \text{O}_2 \rightarrow \text{CH}_3\text{O}_2 + \text{H}_2\text{O}. \] (1)

CH₄ is also removed by soil uptake and reactions with atomic chlorine and stratospheric oxidants, but these losses are small. Although subsequent reactions with CH₃O₂ regenerate OH (Lelieveld et al., 2016; Wennberg et al., 1998), the net effect is that CH₄ suppresses tropospheric OH concentrations, prolongs the CH₄ lifetime, and amplifies the CH₄ concentration response to emission changes. This is known as the CH₄ feedback effect and it increases the radiative forcing, global warming potential, and environmental impact of CH₄ emissions.

This paper combines a literature review of the CH₄ feedback with new research results. The remainder of section 1 reviews and summarizes the core theory, analysis methods, and applications of the CH₄ feedback. These equations and results are gathered from many papers and presented together for the first time (Berntsen et al., 1992; Fuglestvedt et al., 1996, 1999; Prather, 1994, 1996, 2002, 2007; West et al., 2007; Wild & Prather, 2000). In some cases, I provide derivations and discussion of implicit assumptions that were not

© 2018. The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
present in the original literature. Sections 2 and 3 use a global atmospheric chemistry model to probe previously unexamined aspects of the CH4 feedback: its spatial and temporal variation; the influence of meteorology, emissions, and atmospheric composition; and the role of model boundary conditions.

1.1. Behavior of a Mass Perturbation

The essential dynamics of the CH4 feedback can be derived from the mass balance equation

$$\frac{dm}{dt} = E - km$$ \hspace{1cm} (2)

where \(m \) is the mass or burden of CH4 in the atmosphere, \(E \) is the emission rate, and \(k \) is the first-order loss frequency due to all processes. Averaging each term over 1 year or more avoids complications of seasonal cycles. We can linearize equation (2) around the steady state with emissions \(E_0 \), loss frequency \(k_0 \), and mass \(m_0 = E_0/k_0 \) to determine the behavior of a small perturbation \(m' = m - m_0 \). Since OH concentrations depend on the CH4 abundance (reaction (1)), the loss frequency \(k \) with the perturbed mass is \(k = k_0 + m'(dk/dm) \).

The CH4 perturbation is governed by

$$\frac{dm'}{dt} = -k_0(1+R)m'$$ \hspace{1cm} (3)

plus neglected terms of order \(m'^2 \). \(R \) represents the fractional change in CH4 loss frequency per fractional change in atmospheric CH4 abundance, which must be negative since rising CH4 abundance suppresses OH and CH4 loss. The solution to this equation is

$$m'(t) = m'(0) \exp\left(-\frac{t}{\tau_p}\right),$$

where \(\tau_p \) is the perturbation time scale

$$\tau_p = \frac{1}{k_0(1+R)} = \frac{1}{f}\tau_0; \hspace{0.5cm} f \equiv \left(\frac{1}{1+R}\right).$$ \hspace{1cm} (4)

\(f \) is generally called the feedback factor. In reality, CH4 mass perturbations follow a more complex decay curve with multiple e-folding time scales, due to coupling with CO, O3, and other reactive gases that is not fully accounted for in reaction (1) (Prather, 1994). Nevertheless, they result in a time-average perturbation identical to that derived here (Prather, 2002) and the single perturbation time \(\tau_p \) above is very close to the slowest mode that dominates in the fully coupled system (Prather, 1994).

Past studies have found \(R \approx -0.25 \) to \(-0.3 \) and \(f \approx 1.3\text{–}1.4 \) (Fiore et al., 2009; Holmes et al., 2013; Prather et al., 2001; Stevenson et al., 2013), meaning that CH4 perturbations persist 1.3–1.4 times longer than would be expected from the steady state lifetime \(\tau_0 \) derived from the CH4 budget. For chemical box models or low-dimensional spatial models, the perturbation time \(\tau_p \) can be derived analytically from eigen-analysis of the chemical Jacobian, but this approach is intractable for state-of-the-art global models with order \(10^8 \) chemical state variables. For these models, the feedback must be derived from numerical evaluation of \(R \) or other methods described below.

The distinction between lifetime and perturbation time is important for the cumulative radiative forcing (RF), or climate heating, from a CH4 emission pulse, among other impacts (Fuglestvedt et al., 1996, 1999; Prather, 2002):

$$\int_0^T RF(t) \ dt = E_{RF} \int_0^T m'(0) \exp\left(-\frac{t}{\tau_p}\right) dt = E_{RF} m'(0) \tau_p (1-e^{-T/\tau_p}).$$ \hspace{1cm} (5)

where \(E_{RF} \) is the specific radiative forcing from 1 kg of CH4. If \(m'(0) = 1 \) kg, then this quantity is the absolute global warming potential (AGWP\(_{\text{CH}_4} \)). The global warming potential (GWP) of CH4 is then the ratio of AGWP\(_{\text{CH}_4} \) to the AGWP of CO2. If \(T \gg \tau_p \), as is the case for the 100-year AGWP and longer, then

$$\text{AGWP}_{\text{CH}_4} = E_{RF} f \tau_0.$$

This demonstrates that it is the perturbation time, \(\tau_p = f \tau_0 \), not the lifetime, \(\tau_0 \), that determines the GWP, climate, and environmental effects of CH4.

1.2. Behavior of Emission or Loss Perturbations

The feedback effect also influences the change in steady state mass in response to a sustained change in emissions. An emissions change, \(dE \), initially creates a proportional change in steady state mass

$$\frac{dm}{dt} = E - km$$ \hspace{1cm} (6)
\[
\frac{dm_1}{m_0} = \frac{dE}{E_0}.
\]

(7)

While this would be exact for a linear system with constant \(k_0 \), the mass change \(dm_1 \) alters the loss frequency

\[
\frac{dk_1}{k_0} = R \frac{dm_1}{m_0}.
\]

(8)

The new loss frequency, in turn, creates a secondary change in steady state mass

\[
\frac{dm_2}{m_0} = \frac{dk_1}{k_0} = -R \frac{dm_1}{m_0} = -R \frac{dE}{E_0}.
\]

(9)

Tertiary and higher changes follow

\[
\frac{dm_n}{m_0} = \frac{dk_1}{k_0} = \cdots = \frac{dE}{E_0} (1 - R^2 - \ldots) = f \frac{dE}{E_0}.
\]

(10)

The same result can also be obtained from the steady state condition, \(E = km \). Dividing its total differential, \(dE = k \, dm + m \, dk \), by the original steady state, \(E_0 = k_0 m_0 \), and substituting \(R \) from equation (3) leads to equation (10). Thus, the same feedback factor, \(f \), describes both the prolonged decay of a mass perturbation (equations (3) and (4)) as well as the amplified mass response to a sustained emission change (equation (10)). Exogenous changes in CH\(_4\) lifetime or loss rate—via changes in O\(_3\) precursors, weather, or climate—can also trigger a change in steady state mass. In that case equations (7)–(10) still apply with \(dE / E_0 \) replaced by \(ds / s_0 \) or \(-dk / k_0 \).

1.3. Large CH\(_4\) Perturbations

The discussion and all equations above began from the premise that the CH\(_4\) perturbations are small. Specifically, equations (3) and (8) estimate changes in loss frequency using only the first derivative. Therefore, nearly all of the subsequent results, including the perturbation lifetime (equation (4)), feedback factor, and new steady state mass (equation (10)), strictly apply only for small or infinitesimal CH\(_4\) perturbations. For large emission changes, results may differ from these linearized equations above because \(R \) varies with the CH\(_4\) burden and other emissions. Section 3.2 critically examines the stability of \(R \) and \(f \), but for some purposes \(R \) can be treated as constant.

To determine the steady state mass change expected from a finite change in emissions from \(E_a \) to \(E_b \), equation (10) can be integrated

\[
\int_{m_a}^{m_b} \frac{dm}{m} = \int_{E_a}^{E_b} \frac{dE}{f E},
\]

(11)

If masses \(m_a \) and \(m_b \) differ by less than about 50%, then \(R \) and \(f \) can be treated as a constant (±5%; see section 3.2). In that case

\[
m_b = m_a \left(\frac{E_b}{E_a} \right)^f.
\]

(12)

Following the same reasoning, if the change is initiated by an exogenous change in loss rate or lifetime from \(\tau_a = 1 / k_a \) to \(\tau_b = 1 / k_b \), then the masses are related by (West et al., 2007)

\[
m_b = m_a \left(\frac{\tau_b}{\tau_a} \right)^f = \left(\frac{k_a}{k_b} \right)^f.
\]

(13)

Note that the ratios \(\tau_b / \tau_a = k_a / k_b \) represent only the initial exogenous change in CH\(_4\) loss while holding CH\(_4\) concentrations constant. The losses and lifetimes will be further modified by the feedback effect. Both equations (12) and (13) should be restricted to situations where \(f \) is approximately constant. For greater realism, section 3.2 defines \(f \) as a function of CH\(_4\) burden, which enables numerical integration of equation (11) without approximating \(f \) as constant.
1.4. Methods for Quantifying CH₄ Feedback From Chemical Models

Although observations of CH₂Cl₂ and some other gases constrain the CH₄ lifetime τ (Montzka et al., 2011; Rigby et al., 2017; Spivakovsky et al., 2000; Turner et al., 2017), there are no observations that directly constrain τ_p or $f = \tau_p/\tau$. Global atmospheric chemistry models provide the only feasible means of quantifying these important quantities. The simplest approach to estimate τ_p is to perturb the mass of CH₄ in a model and fit the simulated mass decay to an exponential function (Derwent et al., 2001; Wild & Prather, 2000). While this method works, it is rarely used because it requires two simulations (control and perturbation) lasting a decade or more to obtain a good estimate of τ_p and f. The derivation above suggests a more efficient method is to calculate R from two short simulations with different CH₄ burdens; then f and τ_p are calculated via equation (4). This is the approach established by Prather et al. (1995) and used by most researchers since (Fuglestvedt et al., 1999; Prather et al., 2001; Fiore et al., 2009; Holmes et al., 2013; Stevenson et al., 2013; Voulgarakis et al., 2013).

In the standard approach, the CH₄ loss due to tropospheric OH (L_{OH}) and total atmospheric CH₄ mass (m) are diagnosed from a model representing the present-day atmosphere. The loss and mass should be averaged over at least 1 year to represent mean annual conditions, after several months of spin-up to approach steady state for tropospheric species, including O₃, CO, and C₂H₆. The partial loss frequency (k_{OH}) and lifetime (τ_{OH}) are derived from annual, global mean quantities

$$k_{OH} = \frac{L_{OH}}{m} = \frac{L_{CH}}{m}$$

(14)

The total CH₄ loss frequency (k) and lifetime (τ) must also account for CH₄ losses from tropospheric Cl (L_{Cl}), stratospheric oxidants (L_{strat}), and soil (L_{soil}):

$$k = \frac{1}{\tau} = \frac{L}{m} = \frac{L_{OH} + L_{Cl} + L_{strat} + L_{soil}}{m} = k_{OH} + k_{Cl} + k_{strat} + k_{soil}$$

(15)

Literature values can be used for any process that is not simulated in the model. Reasonable values are $k_{Cl} = 0.005 \text{ yr}^{-1}$, $k_{strat} = 0.0083 \text{ yr}^{-1}$, and $k_{soil} = 0.0067 \text{ yr}^{-1}$ (Prather et al., 2012). These values should always be reported because they impact the overall feedback strength diagnosed from the model. The simulation is run a second time using perturbed CH₄ concentrations, often 5–20% larger. The sensitivity R is calculated by finite difference

$$R = \frac{\ln k_1 - \ln k_0}{\ln m_1 - \ln m_0} = \frac{\ln (k_1/k_0)}{\ln (m_1/m_0)}$$

(16)

where subscripts 0 and 1 indicate quantities from the control and perturbed simulations, respectively. The denominator of equation (16) equals the size of the imposed perturbation to CH₄ burden. Some studies report the partial sensitivity of tropospheric OH loss to CH₄ concentration (e.g., Prather et al., 1995, 2001)

$$R_{OH} = \frac{d}{d\ln m} \ln k_{OH} = \frac{\ln k_{OH,1} - \ln k_{OH,0}}{\ln m_1 - \ln m_0}.$$

(17)

This quantity is not needed to calculate the CH₄ feedback effect but can be a useful model diagnostic and means to isolate the feedback on tropospheric OH from the feedbacks on stratospheric or other losses. R and R_{OH} are related by

$$R = \frac{R_{OH} k_{OH} + R_{Cl} k_{Cl} + R_{strat} k_{strat} + R_{soil} k_{soil}}{k_{OH} + k_{Cl} + k_{strat} + k_{soil}}.$$

(18)

There has been little effort to study CH₄ feedbacks on other CH₄ loss processes ($R_{Cl}, R_{strat}, R_{soil}$). The common approach of prescribing fixed values of k_{Cl}, k_{strat}, and k_{soil} in equations (15) and (16), while k_{OH} changes, implicitly assumes that these feedbacks are zero, but they may not be. While these other feedbacks are unknown, because of their small loss frequencies compared to OH, they would have to be very strong to meaningfully change the overall feedback R or f. The sensitivity can also be expressed in terms of lifetime instead of loss frequency.
I use the GEOS-Chem global chemical transport model (v11-01, www.geos-chem.org) to examine how the CH4 feedback responds to meteorology, emissions, and model boundary conditions. Simulations are conducted with the tropospheric chemistry mechanism (Parrella et al., 2012) and MERRA-2 meteorology at 4° × 5° horizontal resolution and 47 vertical layers (Gelaro et al., 2017). When simulating tropospheric oxidant chemistry, GEOS-Chem typically uses specified CH4 concentrations in four latitude bands. Here the model is reconfigured to interactively simulate CH4 concentrations using CH4 emissions from Wecht et al. (2014). CH4 losses are calculated from the simulated tropospheric OH concentrations (reaction (1)) and fixed loss frequencies (given in section 1.4) for Cl, stratospheric oxidants, and soils. Chemical reaction diagnostics are added to track the production and loss of OH, O3, and each chemical intermediate in the oxidation of CH4 to CO2. A minor bug in lightning NO emissions is also fixed (L. Murray, personal communication, 2017).

The chemical initial condition is taken from a prior multiyear simulation and the CH4 distribution is rescaled to match the observed marine background of 1,775 ppb in January 2005 (Dlugokencky et al., 2017). The first year is treated as spin-up.

To assess how CH4 boundary conditions influence the feedback effect, I configure the model with three different types of CH4 boundary conditions: specified emissions (described above), specified mole fractions at the surface, and specified mole fractions everywhere. The emission-driven simulation runs first and its monthly mean CH4 mole fractions are imposed in the other configurations, so that the CH4 distributions are nearly identical in the control simulations of all three configurations. The influences of emissions and meteorology are assessed with additional simulations that have doubled CO emissions, doubled NOx emissions (NOx = NO + NO2), 1 K increase in temperature, 20% increase in water vapor, or 20% increase in photolysis rates. These additional simulations all start in January 2006 and results for 2007 are analyzed. To calculate the feedback effect, one additional simulation is carried out in each configuration with the CH4 emissions or mole fractions increased 20% compared to its control simulation. These perturbation simulations also begin with 20% higher CH4 mole fractions so that they approach their new steady state faster.

3. Results

3.1. Influence of CH4 Boundary Conditions

At the time the methods in section 1.4 were developed, most global tropospheric chemistry models prescribed CH4 concentrations everywhere based on observations so that the model would have a reasonable CH4 distribution despite inconsistencies between CH4 sources and modeled sinks. This approach meant that \(m_0 \) and \(m_1 \) were specified by the user. Furthermore, the fractional perturbation to CH4 mole fractions was applied uniformly in all grid cells. Today, many models simulate CH4 from its sources and sinks or using surface CH4 mole fractions. In these models, the user controls only the surface abundance or fluxes, so \(m_0 \) and \(d\ln m \) are outside the user’s direct control. In addition, the fractional change in CH4 mole fraction can vary throughout the model domain. This diversity of modeling approaches is found in several recent ensemble studies (Fiore et al., 2009; Stevenson et al., 2013; Voulgarakis et al., 2013). To date, it has not been demonstrated if or how these differences in model structure affect the CH4 lifetime or its chemical feedback.

Table 1 compares the CH4 lifetime and feedback under three different types of CH4 boundary conditions. All three configurations produce nearly the same atmospheric chemical state by design. The differences in CH4 burden are 0.07% and differences in CH4 lifetime are 0.02%. In all cases, the CH4 lifetime is shorter than suggested by observations (9.5 ± 1.3 year, Prather et al., 2012) because the model lacks some halogens (Sherwen et al., 2016), has coarse resolution.
(Holmes et al., 2013), and may misrepresent other processes, such as errors in the chemical mechanism or the influence of clouds and aerosols. Many other global atmospheric models also have similar magnitude and longstanding errors in CH4 lifetime for reasons that remain unclear (e.g., Prather et al., 2001; Voulgarakis et al., 2013).

While the control simulations for each configuration are nearly identical, the perturbation simulations for each case are subtly different. In the configuration with fixed mole fractions everywhere, the vertical and spatial gradients of CH4 cannot change from the control simulation and the CH4 mole fractions rise exactly 20% everywhere. In the configurations with emissions or specified surface mole fraction, however, the CH4 gradients and total mass are free to vary; inhomogeneity up to 1.5% of the perturbation magnitude arises. In these two configurations, the denominator of equation (16) must be calculated from the simulation output, but, with specified mole fractions everywhere, the denominator is known a priori from the imposed perturbation. Despite these differences, all configurations produce consistent estimates of $f = 1.372 \pm 0.001$ (Table 1). Although the differences are very slight, the configuration with CH4 emissions has the strongest feedback. That is because the CH4 perturbation grows slightly larger in regions where CH4 is most effective at suppressing OH, which is primarily the tropical marine atmosphere (see section 3.3), leading to further OH suppression and CH4 accumulation. With prescribed concentrations, this cannot happen. While the boundary condition choice has a detectable effect on f, the differences are so slight (0.2%) that they are unlikely to matter for any application.

In the configuration with CH4 emissions, equation (12) predicts that the simulation with 1.2 times greater emissions should eventually reach a steady state with $f = 1.369$ to 1.372 (Table 1). Although the differences are very slight, the configuration with CH4 emissions has the strongest feedback. That is because the CH4 perturbation grows slightly larger in regions where CH4 is most effective at suppressing OH, which is primarily the tropical marine atmosphere (see section 3.3), leading to further OH suppression and CH4 accumulation. With prescribed concentrations, this cannot happen. While the boundary condition choice has a detectable effect on f, the differences are so slight (0.2%) that they are unlikely to matter for any application.

In the configuration with CH4 emissions, equation (12) predicts that the simulation with 1.2 times greater emissions should eventually reach a steady state with $1.2^2 = 1.284$ times greater CH4 mass. After 9 years of simulation, the model has not reached this state (Figure 1), but the time series fits an exponential approach to steady state with a value of $f = 1.372 \pm 0.001$. This demonstrates the consistent estimates of feedback derived from multidecadal simulations (Figure 1) versus simulations of 2 years interpreted with equations (4) and (16) (Table 1). The multidecadal approach requires an order of magnitude more computational time, however, only works in models using CH4 emissions, and appears to be unnecessary.

3.2. Stability of the Feedback Factor

The CH4 feedback factor is sometimes treated as constant in time (e.g., section 1.3) but it is not (Isaksen et al., 2011; Prather et al., 1995). While changes in the CH4 lifetime, τ, due to emissions and climate have been studied extensively in observations and models (e.g., Holmes et al., 2013; Montzka et al., 2011; Naik et al., 2013; Rigby et al., 2017; Turner et al., 2017; Voulgarakis et al., 2013), less attention has been given to temporal changes in f or τ, despite their importance to the climate impact of CH4 (equation (6)).

Figure 2 shows the simulated CH4 lifetime in a series of GEOS-Chem simulations with CH4 mole fractions fixed at 0.25 to 16 times present-day. Each simulation runs for 2 years with 2006–2007 meteorology and the second year is analyzed. These simulations only modify CH4 emissions has the strongest feedback. That is because the CH4 perturbation grows slightly larger in regions where CH4 is most effective at suppressing OH, which is primarily the tropical marine atmosphere (see section 3.3), leading to further OH suppression and CH4 accumulation. With prescribed concentrations, this cannot happen. While the boundary condition choice has a detectable effect on f, the differences are so slight (0.2%) that they are unlikely to matter for any application.

In the configuration with CH4 emissions, equation (12) predicts that the simulation with 1.2 times greater emissions should eventually reach a steady state with $1.2^2 = 1.284$ times greater CH4 mass. After 9 years of simulation, the model has not reached this state (Figure 1), but the time series fits an exponential approach to steady state with a value of $f = 1.372 \pm 0.001$. This demonstrates the consistent estimates of feedback derived from multidecadal simulations (Figure 1) versus simulations of 2 years interpreted with equations (4) and (16) (Table 1). The multidecadal approach requires an order of magnitude more computational time, however, only works in models using CH4 emissions, and appears to be unnecessary.

3.2. Stability of the Feedback Factor

The CH4 feedback factor is sometimes treated as constant in time (e.g., section 1.3) but it is not (Isaksen et al., 2011; Prather et al., 1995). While changes in the CH4 lifetime, τ, due to emissions and climate have been studied extensively in observations and models (e.g., Holmes et al., 2013; Montzka et al., 2011; Naik et al., 2013; Rigby et al., 2017; Turner et al., 2017; Voulgarakis et al., 2013), less attention has been given to temporal changes in f or τ, despite their importance to the climate impact of CH4 (equation (6)).

Figure 2 shows the simulated CH4 lifetime in a series of GEOS-Chem simulations with CH4 mole fractions fixed at 0.25 to 16 times present-day. Each simulation runs for 2 years with 2006–2007 meteorology and the second year is analyzed. These simulations only modify CH4 emissions has the strongest feedback. That is because the CH4 perturbation grows slightly larger in regions where CH4 is most effective at suppressing OH, which is primarily the tropical marine atmosphere (see section 3.3), leading to further OH suppression and CH4 accumulation. With prescribed concentrations, this cannot happen. While the boundary condition choice has a detectable effect on f, the differences are so slight (0.2%) that they are unlikely to matter for any application.

In the configuration with CH4 emissions, equation (12) predicts that the simulation with 1.2 times greater emissions should eventually reach a steady state with $1.2^2 = 1.284$ times greater CH4 mass. After 9 years of simulation, the model has not reached this state (Figure 1), but the time series fits an exponential approach to steady state with a value of $f = 1.372 \pm 0.001$. This demonstrates the consistent estimates of feedback derived from multidecadal simulations (Figure 1) versus simulations of 2 years interpreted with equations (4) and (16) (Table 1). The multidecadal approach requires an order of magnitude more computational time, however, only works in models using CH4 emissions, and appears to be unnecessary.

3.2. Stability of the Feedback Factor

The CH4 feedback factor is sometimes treated as constant in time (e.g., section 1.3) but it is not (Isaksen et al., 2011; Prather et al., 1995). While changes in the CH4 lifetime, τ, due to emissions and climate have been studied extensively in observations and models (e.g., Holmes et al., 2013; Montzka et al., 2011; Naik et al., 2013; Rigby et al., 2017; Turner et al., 2017; Voulgarakis et al., 2013), less attention has been given to temporal changes in f or τ, despite their importance to the climate impact of CH4 (equation (6)).
The feedback factor in GEOS-Chem is \(f = 1.37 \) in the present-day simulation, but falls to 1.23 at 1750 levels of \(\text{CH}_4 \) and rises to a plateau of 1.45–1.55 at 2.5 times present-day \(\text{CH}_4 \). CTM2 predicts very similar trends in \(f \) over their overlapping range of \(\text{CH}_4 \) burden. The plateau occurs simply because, at high \(\text{CH}_4 \), \(k_{\text{OH}} \) becomes small and comparable to other losses \((k_{\text{Cl}}+k_{\text{at}}+k_{\text{soil}})\). Beyond that point, equation (18) dictates that \(R \) and \(f \) stop increasing even though \(R_{\text{OH}} \) continues strengthening. The overall feedback becomes sensitive to feedbacks on other loss processes \((R_{\text{Cl}}, R_{\text{at}}, \text{and } R_{\text{soil}})\). This behavior of \(f \) over the range \(m = (1 - 60) \times 10^3 \) Tg can reasonably be described as

\[
f = \min \left(f_0, f_1 + a \ln \left(\frac{m}{m_0} \right) \right),
\]

where \(f_0 = 1.37 \), \(f_1 = 1.5 \), \(a = 0.14 \), and \(m_0 = 5,000 \) Tg. Over the same range of mass, \(R_{\text{OH}} \) is described by

\[
R_{\text{OH}} = 0.49 \left(\frac{m}{m_0} \right)^{-0.2} - 0.81, \quad \text{with 6% error or less.}
\]

These functions enable numerical integration of equation (11) without the assumption of constant \(f \) implicit in equations (12) and (13).

Clearly, \(f \) is an increasing function of \(\text{CH}_4 \) burden from the preindustrial era through the twenty-first century for a range of scenarios, although the feedback factor has likely remained within about 10% of its present-day value. While \(f \) also depends on emissions, section 3.3 shows that the sensitivity to \(\text{NO}_x \) emissions is quite weak so the evolving \(\text{CH}_4 \) burden has likely been the main driver of historical changes in \(f \). This historical rise in \(f \) in the single model here is larger than the range of \(f \) derived from model ensembles for the present (Fiore et al., 2009; Stevenson et al., 2013). Over the same range of \(\text{CH}_4 \) burden, the lifetime \(\tau \) rises 55% from 5.9 to 9.2 year and the perturbation time \(\tau_p \) rises nearly 90% from 7.3 to 13.7 year, because the \(\text{CH}_4 \) lifetime \(\tau \) rises together with feedback factor \(f \). Unlike \(f \), the perturbation time does not reach a plateau at high \(\text{CH}_4 \) burden. Other things being equal, the \(\text{CH}_4 \) AGWP and environmental impacts scale with \(\tau_p \) or with burden times \(\tau_p \), and therefore increase by 90% or more.

On short times scales, assuming constant feedback \(f \) is reasonable. The year-to-year variability in \(f \), which can be diagnosed from the 9 year simulation in Figure 1, depends primarily on the changes in \(\text{CH}_4 \) burden. After removing the influence of rising \(\text{CH}_4 \) predicted by equation (20), the residual interannual variability in \(f \) is 0.002 (rms) or 0.2% of the mean. From a similar 13 year simulation in the UCI CTM (Holmes et al., 2013), the interannual variability of \(f \) is 0.3% in that model. This is the combined influence of variability in meteorology and emissions, meaning that both individually must have a small influence on the feedback, except insofar as they cause changes in the \(\text{CH}_4 \) burden. In comparison, meteorology and emissions drive much larger interannual variability in the \(\text{CH}_4 \) lifetime (1–2%, Holmes et al., 2013; Montzka et al., 2011; Murray et al., 2013).

3.3. Chemical Mechanism of the CH4 Feedback and Its Regional Variability

Past literature has always described and quantified the \(\text{CH}_4 \) feedback as a global quantity. In reality, however, the \(\text{OH} \) response to \(\text{CH}_4 \) perturbations varies regionally and temporally. While a global value is sufficient for many applications, understanding this regional variability is probably required to develop observational tests of the simulated \(\text{CH}_4 \) feedback.

Figure 3 maps the feedback term \(R_{\text{OH}} \) geographically, seasonally, and vertically. \(R_{\text{OH}} \) is shown rather than \(R \) because this model only simulates the tropospheric \(\text{OH} \) loss. The figure shows just 1 month, June 2007, to avoid confounding effects of the seasonal cycle and because the processes are similar in all months. The feedback is strongest \((R_{\text{OH}} \approx -0.35 \text{ to } -0.4)\) over the tropical and subtropical oceans and generally weaker over land, although it remains strong over the Sahara and central Asia. The weakest feedback \((R_{\text{OH}} \approx -0.15 \text{ to } -0.25)\) occurs over the tropical continents, at the poles, and in the upper troposphere. For comparison, the CH4 loss frequency \(k_{\text{OH}} \) is also large over the tropical oceans, but, whereas \(R_{\text{OH}} \) peaks over remote ocean basins, \(k_{\text{OH}} \) peaks in polluted coastal environments—where the mixture of \(\text{O}_3 \) pollution, water vapor, and sunlight provide a large primary source of \(\text{OH} \) via \(\text{O}(^{1}D) \). \(\text{CH}_4 \) loss and feedback both peak in the summer hemisphere, but the seasonal cycle amplitude is much greater for \(k_{\text{OH}} \) than for \(R_{\text{OH}} \). Globally, the feedback is slightly stronger in July than January, but the peak-to-peak change in global \(R_{\text{OH}} \) is only 0.02. At high latitudes and altitudes, \(k_{\text{OH}} \) is negligible because of the strong temperature dependence of reaction (1), but \(R_{\text{OH}} \) remains modest in these environments. The global value of \(R_{\text{OH}} = -0.32 \) (section 3.1, Table 1) is an average of the column values seen in Figure 3 weighted by the local \(k_{\text{OH}} \). Thus, the global feedback is mainly determined by the feedback strength in the tropical lower troposphere, where \(k_{\text{OH}} \) is high.

The \(\text{CH}_4 \) feedback is usually explained as an increase in \(\text{OH} \) loss (reaction (1)) under constant \(\text{OH} \) sources (Prather, 1994, 1996, 2007) even though those sources could change. The model here can separately
quantify the roles of OH losses versus sources in shaping the feedback strength. Globally, CH$_4$ directly consumes 15% of tropospheric OH (reaction (1)) and indirectly consumes about 40% of tropospheric OH after accounting for CO and other organic products of CH$_4$ oxidation that react with OH. In the remote marine lower troposphere, which has strong influence on the overall global feedback, CH$_4$ directly and indirectly consumes over 90% of OH in the model. If OH sources were constant, the effect of CH$_4$ perturbations on OH loss would generate a feedback of $R_{OH} = \frac{\Delta OH}{OH}$.

This is much larger than model’s actual global value $R_{OH} = 0.32$, meaning that the feedback mechanism involves rising OH sources that offset about half of the additional OH loss.

To understand the spatial and seasonal patterns in Figure 3, it is helpful to consider the OH change at any location as a product of changes in HOx family partitioning and the HOx abundance (HOx = OH + HO$_2$):

$$\frac{\Delta [OH]}{[OH]} = \frac{\Delta [HOx]}{[HOx]} + \frac{\Delta ([OH]/[HOx])}{[OH]/[HOx]}.$$

(21)

The CH$_4$ feedback is strong where this sum has a large negative magnitude. Figure 4 decomposes the CH$_4$ feedback in the lower troposphere into these two terms. This decomposition reveals that the $[OH]/[HOx]$ ratio decreases 5–12% almost everywhere in response to the 20% increase in CH$_4$ abundance. The only exceptions are densely vegetated forests, mainly in the tropics and boreal zone. The change in HOx ratio is offset in most places by a 3–10% increase in HOx abundance. From this perspective, the CH$_4$ feedback is a balance between OH conversion to HO$_2$ versus overall increase in the HOx abundance. Both components are similar magnitude, but the HOx partitioning effect is stronger so overall CH$_4$ depletes OH. Nothing in the chemistry, however, requires that the OH change is negative; in the upper troposphere, CH$_4$ enhances OH for reasons explained below.

The $[OH]/[HOx]$ ratio in the lower troposphere is primarily controlled by OH loss in reaction (1) and (Lelieveld et al., 2016)

$$\text{OH} + \text{CO} \rightarrow \text{CO}_2 + \text{HO}_2$$

(22)

$$\text{OH} + \text{RH} \rightarrow \text{RO}_2 + \text{H}_2\text{O}$$

(23)

balanced by OH production from...
From these reactions, and recognizing that $\text{[HO_x]} \approx [\text{HO}_2]$, the HOx family partitioning is

$$\frac{[\text{OH}]}{[\text{HO}_x]} \approx \frac{k_{26} [\text{NO}] + k_{27} [\text{O}_3] + k_{25} [\text{O}^1 (\text{D})] [\text{H}_2\text{O}]/[\text{HO}_2]}{k_{1}[\text{CH}_4] + k_{12} [\text{CO}] + k_{23} [\text{RH}]}.$$ \hspace{1cm} (28)

In high-NOx environments, reaction (26) typically dominates OH production, so equation (28) can be simplified by neglecting reactions (25) and (27). The analysis here, however, focuses on how the competing reactions in the denominator impact the sensitivities in equation (21) and Figure 4.

Equation (28) predicts that the HOx partitioning should be insensitive to CH4 in environments with high hydrocarbon concentrations, meaning that $k_{23} [\text{RH}]$ controls the denominator. Indeed, Figure 4 shows that the $[\text{OH}]/[\text{HO}_x]$ ratio changes very little where isoprene and other biogenic hydrocarbon concentrations are high. Over tropical and boreal forests, biogenic emissions in the model consume 40–70% of the OH in the lower troposphere and CH4 consumes less than 10%, consistent with the low sensitivity of $[\text{OH}]/[\text{HO}_x]$ to CH4.

Figure 4 also shows that the CH4 perturbation over industrial regions generates large HOx increases that offset 80% of the reduction in $[\text{OH}]/[\text{HO}_x]$ ratio. Over the ocean, the offset is less than 30%. These industrial areas have major anthropogenic NOx emissions and the ratio $[\text{H}_2\text{O}_2]/[\text{HNO}_3] \approx 0.3$, an indicator for NOx-saturated O3 production (Jacob et al., 1995; Sillman, 1995), is a good predictor of where the offset peaks. The model can explain the HOx increase by diagnosing the reactions that contribute to HOx production (Wennberg et al., 1998).
Indirect HO₂ production via CH₄-derived O₃ supplies nearly all of the HO₂ increase seen in Figure 4 over the tropical oceans, but just 10% over the industrial continents (supporting information Figure S1). The direct source generates 0.2–0.6 mole of HO₂ for each mole of CH₄ oxidized in the lower troposphere. This explains 40% of the HO₂ increase in the Arctic but less than 20% everywhere else. Adding the direct and indirect sources together explains all of the HO₂ increase over the oceans, but only about 30% over industrial continents. Autocatalytic amplification explains the rest of the HO₂ increase. The amplification factor can be diagnosed in the model from total HO₂ production in the control simulation divided by noncatalytic HO₂ production: reaction (25), ozonolysis of VOC, and photolysis of emitted aldehydes and ketones (Jaeglé et al., 2001; Wennberg et al., 1998). This analysis shows that HO₂ sources are amplified by a factor of 4–5 in NOₓ-rich continental regions but have almost zero amplification (factor 1–1.5) over oceans and land regions where [H₂O₂]/[HNO₃] ≥ 0.6 (supporting information Figure S1). Combining the amplified direct and indirect HO₂ sources quantitatively explains the global pattern and magnitude of HO₂ changes produced by the CH₄ perturbation (Figure 4 and supporting information Figure S1). Thus, the large HO₂ increase and weak CH₄ feedback over the industrial continents is mostly (70–80%) explained by autocatalytic HO₂ production that is enabled by NOₓ-saturated conditions. The strongest feedback, meaning most negative RO₂ source coincides with regions where O¹(D) + H₂O (reaction (25)) dominates OH supply and the numerator of equation (28). These features coincide because under low-NOₓ conditions, such as the tropical oceans and some deserts, HO₂ recycling to OH is very limited (e.g., Lelieveld et al., 2016), which leaves O¹(D) + H₂O as the main OH source. At the same time, low-NOₓ conditions also make autocatalytic HO₂ production ineffective, so there is little HO₂ increase when CH₄ concentrations rise; as a result, R₀OH is strongly negative.

The feedback mechanism operates differently in polar regions and in the upper troposphere. Near the poles, the feedback is weak (R₀OH ≈ −0.2), despite negligible biogenic emissions and low NOₓ levels. At the poles, the CH₄ perturbation depresses [OH]/[HOₓ] just as it does elsewhere, but the HO₂ offset is much larger than might be expected from the large [H₂O₂]/[HNO₃] ratio. The reason is that CH₂O photolysis is a major HO₂ source near the poles, unlike the lower latitudes (Mao et al., 2010). As a result, CH₄ perturbations produce a large relative increase in HO₂ via CH₂O, without requiring NOₓ for autocatalytic amplification or major changes in O₃. In the upper troposphere (p < 200 hPa), R₀OH is slightly positive (0 ≤ R₀OH ≤ 0.1), meaning that rising CH₄ increases OH, unlike the rest of the troposphere. In this region, CH₄ oxidation is an important HO₂ source (Wennberg et al., 1998) and the [OH]/[HOₓ] ratio has very little sensitivity to CH₄ because reaction (1) has strong temperature dependence. While interesting, the upper troposphere and polar feedback has little impact on the overall global feedback because k₉OH is very small in these regions.

3.4. Meteorological and Emission Controls on the Global CH₄ Feedback Strength

Table 2 summarizes the effects of meteorology and selected emissions on the global CH₄ feedback. For comparison, past studies have found that temperature, radiation, humidity, and NOₓ all strongly increase CH₄ loss by tropospheric OH (k₉OH), while emissions of CO and nonmethane volatile organic compounds (NMVOC) weakly decrease it (Holmes et al., 2013). The same meteorological variables have much weaker influence on the feedback strength. In explicit sensitivity tests here, increasing water vapor mole fractions or photolysis rates by 20% increase the feedback just 1%. A 1 K increase in temperature has no effect on the feedback. These sensitivity tests involve changes that exceed interannual variability and are at the upper end of expected decadal changes under greenhouse gas forcing. Actual interannual variability in the feedback strength driven by meteorology should therefore be under 1%, in agreement with the small variability found in the multiyear simulation (section 3.2). The weak sensitivity of the feedback to insolation, water vapor, and temperature is also consistent with the weak seasonal cycle in f and weak vertical and meridional gradients seen in Figure 3.

Hydrocarbon and CO emissions clearly weaken the CH₄ feedback via equation (28). The sensitivity test with doubled CO emissions confirms this, dropping the feedback from f = 1.37 to f = 1.31. NOₓ emissions are more complex, however. While Figure 4 shows that the CH₄ feedback is weak in regions with large NOₓ emissions, the explicit sensitivity test reveals that raising NOₓ emissions above present-day levels

Table 2

Effect of Meteorological and Chemical Variables on the CH₄ Loss Frequency (k₉OH) and CH₄ Feedback (f)

<table>
<thead>
<tr>
<th>Variable</th>
<th>k₉OH</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insolation</td>
<td>+ +</td>
<td>+</td>
</tr>
<tr>
<td>Temperature</td>
<td>+ +</td>
<td>=</td>
</tr>
<tr>
<td>Humidity</td>
<td>+ +</td>
<td>=</td>
</tr>
<tr>
<td>NOₓ emission</td>
<td>+ +</td>
<td>=</td>
</tr>
<tr>
<td>CO, NMVOC emission</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

Symbols indicate how the process responds to increases in the variable: strongly positive (+ +), modestly positive (+), weak or variable (=), modestly negative (−), and strongly negative (− −). Effects on k₉OH are from Holmes et al. (2013). Effects on f are from this work. NOₓ emissions locally weaken the feedback near the source but globally strengthen it very slightly (section 3.4).
actually strengthens the feedback. Doubling NOx emissions drives the feedback up 0.02 to $f = 1.39$. For such a large change in NOx emissions, this is a weak effect. In contrast, this same NOx emission change boosts k_{OH} by 22%. Spatially, doubling NOx weakens the CH4 feedback over source regions, but strengthens it everywhere else. The reason is NOx emissions raise mean levels of tropospheric O3 and OH. As a result, in an emission-driven simulation, background CO and CH4 concentrations fall by similar fractions, but slightly more for CO than CH4 due to their spatial distributions relative to OH, so equation (28) becomes slightly more sensitive to CH4 over most of the globe. Voulgarakis et al. (2013) reported that climate models predict strengthening CH4 feedback over the twenty-first century in the RCP8.5 climate scenario. They hypothesized that declining anthropogenic NOx emissions could explain the effect, but this work shows that NOx has the opposite or perhaps zero effect. Instead, the strengthening feedback in RCP8.5 is more likely due to the projected doubling of CH4 abundance in that scenario through the processes explained in section 3.2.

4. Conclusions

The CH4 feedback on atmospheric chemistry, in which tropospheric OH concentrations fall as CH4 abundance rises, is a major climate process, responsible for about 30% of the CH4 radiative forcing or 0.3 W m$^{-2}$ in 2011. This article reviews the feedback theory, applications, and modeling methods, then explores new aspects of the CH4 feedback. The mechanism for falling OH concentrations is often described simply as a rise in OH loss due to rising CH4 and the CO it produces. This is only partly correct, however, since rising CH4 also boosts HOx sources. Global model simulations here show that the rise in HOx abundance offsets about half of the reduction in OH/HOx ratio caused by CH4 perturbations.

The CH4 feedback strength varies geographically and seasonally. It is strongest over the oceans and in the summer hemisphere and low over tropical forests and industrial regions. While these patterns in the feedback have not been previously described, they can be explained in terms of well-known chemistry of HOx partitioning and production. The CH4 feedback is weak where NMVOC emissions are large, because the [OH]/[HOx] ratio becomes insensitive to CH4, and also weak where NOx emissions are large, because additional HOx production balances the change in HOx partitioning. It may be possible to construct indirect or emergent observational tests of the CH4 feedback strength based on geographic extent of these chemical regimes, and OH reactivity, [OH]/[HOx], and HOx budgets in each. Testing these features has been a long-standing goal of atmospheric chemistry measurements and modeling, but tightening constraints on the CH4 feedback and lifetime likely requires greater focus on evaluating models in the coastal zones at low latitudes, which have the greatest influence on the global feedback.

Global atmospheric chemistry models use either surface flux or specified concentration boundary conditions for CH4. Although CH4 perturbations behave slightly differently in these configurations, the subtle differences are unlikely to matter for any application. Consequently, the differences seen in ensembles of models with a mix of these boundary conditions must arise from their different meteorology and chemistry, not an artifact of their boundary conditions (Fiore et al., 2009; Naik et al., 2013; Stevenson et al., 2013; Voulgarakis et al., 2013). These ensemble studies have focused almost entirely on the CH4 feedback through tropospheric oxidant chemistry. CH4 feedbacks through the chlorine, soil, and stratosphere sinks, or natural emissions could raise or lower the feedback factor f and the perturbation time. With the exception of some carbon cycle effects (Myhre et al., 2013), these additional feedbacks have not been evaluated, but they are potentially relevant for mitigation planning that involves tradeoffs between greenhouse gases using GWP or other impact metrics.

Explicit sensitivity tests show that the global CH4 feedback strength depends only weakly on temperature, water vapor, insolation, and NOx emissions, but robustly strengthens as CH4 rises or NMVOCs fall. As a result, the feedback is very stable from year to year. This weak sensitivity may also explain why model ensembles seem to predict a narrow range of f despite their larger range of k_{OH} (3% versus 10%, respectively, Stevenson et al., 2013; Voulgarakis et al., 2013). Over decades and longer, changes in CH4 abundance alter the feedback strength. The feedback strength increases from $f = 1.23$ at preindustrial CH4 levels to $f = 1.45$ at twice present levels. This is $\pm 10\%$ of present-day feedback over a fivefold change in atmospheric CH4 burden. The feedback is only weakly sensitive to the historical changes in O3 precursor emissions and climate that have accompanied the rise in atmospheric CH4. Given these modest changes it may be acceptable for some applications in the recent past and near future to treat the feedback factor f as a constant, but this
introduces a systematic bias in the results. The environmental and climate warming impacts of CH$_4$ are generally proportional to the perturbation time $\tau_p = f \tau$ and both f and τ increase with CH$_4$ concentration. Considering the effects of CH$_4$ burden alone, τ_p may have risen 40% over the industrial era and up to 90% by the end of the twenty-first century. As a result, accurate climate and environmental assessments require accounting for the evolution of CH$_4$ GWP and other environmental impacts.

References

