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Abstract

Sturmian words are balanced, almost periodic, self-similar and hierarchical in-
finite sequences that have been studied in music theory in connection with diatonic
scale theory and related subjects.[3][5] Carey and Camplitt 1996 give a brief but
suggestive rhythmic example in which these properties are made manifest in a
particularly visceral manner. The present paper expands upon this example, con-
sidering the properties of canons based on Sturmian words, or Sturmian canons.
In particular, a Sturmian word of irrational slope a with a hierarchical periodicity
of p gives rise to p-tuple canons, the voices and relations of which are determined
by the terms of the continued fraction expansion of a.

1 Introduction
Suppose a percussionist wishes to play a steady pulse divided exclusively between a
high and a low pitched instrument. Furthermore, she wishes for the ratio of high (H)
to low (L) attacks to remain constant on average and for these attacks to be distributed
as evenly as possible. If the ratio is relatively simple, then it is fairly straightforward
to determine the appropriate sequence of L and H. For example, if there are three high
attacks for every five pulses, she must play a rotation of ||: (L H) (L H H) :||, dividing
the five-beat pattern into a 2 + 3 rhythm. In the case of eight high attacks for every 13
pulses, then the thirteen-beat pattern is divided into a ((2 + 3) + (2 + 3 + 3)) rhythm,
yielding the sequence ||: ((L H) (L H H)) ((L H) (L H H) (L H H)) :||.

In the case of more complicated ratios, it is helpful to think of the rhythmic pattern
as the lower mechanical sequence of slope a, a discretization of the line y = ax, where
the slope is the number of high attacks per some number of pulses. Given a ∈ R, the
lower mechanical sequence of slope a, ca : N→ {0, 1}, is given by

ca(n) = b(n + 1)ac − bnac − bac .

(Note that it is only the fractional part of a that is important for the mechanical se-
quence. That is, ca = ca+ j, j ∈ Z.) If the slope is rational with a = p/q in reduced
form, then the sequence will repeat with a period of q. For example, if we have 21 high
attacks for every 34 pulses, then the sequence c21/34 is

(((01) (011)) ((01) (011) (011))) (((01) (011)) ((01) (011) (011)) ((01) (011) (011))) ,

which is expressed musically in Figure 1 by associating low attacks with 0s and high
attacks with 1s. Note that the sequence can be segmented into progressively higher-
level groups of 2, 3, 5, 8, and 13 pulses indicated by parentheses in the binary sequence
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Figure 1: Realization of c21/34
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Figure 2: Realization of the retrograde of c21/34

above and by the beaming and placement of bar lines in the realization. The lowest-
level grouping, indicated by breaks in the sixteenth-note beam, always begins with an
isolated L followed by either one or two H, yielding short and long groupings of two
and three sixteenths, respectively.

We can define the retrograde of a mechanical sequence, ca, to be←−c a : N → {0, 1},
where

←−c a(n) = b(−n + 1)ac − b−nac − bac .

For example, the retrograde of the rhythmic sequence in Figure 1 is ←−c 21/34, shown in
Figure 2.

If the slope is irrational, a ∈ R \ Q, then the mechanical sequence is aperiodic. For
example, consider the mechanical sequence whose slope is the reciprocal of the golden
ratio, Φ = 1/φ = frac(φ) ≈ 0.618 . . ., with a corresponding musical realization in Figure
3. The first 34 pulses of the aperiodic sequence (top line of Figure 3) are the same as
the 34-pulse rhythmic pattern in Figure 1, since 21/34 is a very close approximation of
Φ. (In fact, the two sequences will not diverge until the 89th pulse.) The hierarchical
groupings of the top line are made explicit in the slower moving lines below. Each of
the bottom four lines are derived by placing an attack only where the line immediately
above has a low note, and assigning low and high attacks to short and long durations,
respectively.

For irrational slopes, the resulting mechanical sequences are Sturmian words, which
have many well-known properties made manifest in the rhythmic structure of Figure 3.
Sturmian words are balanced, as evidenced by the maximally even distribution of high
and low attacks [4]; aperiodic, corresponding to the lack of repeats; and hierarchical,
as evidenced by the recursively derived sequences of low and high attacks. Canright
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Figure 3: Realization of cΦ
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Figure 4: Progressive diminutions of cΦ

[2] as well as Carey and Clampitt [3] have discussed specific examples of these types
of rhythms and both serve as a point of departure for the present paper, which examines
more generally the self-similar and hierarchical properties of these rhythmic structures
as they manifest in Sturmian canons.

After a brief description of the hierarchy associated with each Sturmian word, this
paper will focus on two issues concerning Sturmian canons. First, note that another
property of Sturmian words is that they have the potential for self-similarity, which is
evident in Figure 3. A significant feature of the rhythmic hierarchy is that every level
has the same sequence of low and high attacks as the original, revealing a high degree
of self-similarity in the sequence cΦ. In a sense, each level is an augmentation of the se-
quence of low and high attacks in the previous levels and a diminution of the sequence
in subsequent levels. However, the various lines are not exact rhythmic augmentations
and diminutions, because the ratio of durations does not remain constant, as is evident
by comparing the pulse stream of equal sixteenth notes in the top line with the unequal
durations of subsequent lines. At progressively higher levels the ratios of short to long
durations converge on Φ and thus the relationship between successive lines becomes
closer to exact augmentation and diminution. Indeed, the duration ratios of levels three
and four are so close that the lines are perceived to be the same rhythmic pattern moving
at different tempos, yielding a rhythmic tempo canon. But the perception of a canonic
relationship between levels one and two is much weaker.

The issue is even clearer when we consider progressive diminutions (or elabora-
tions) of the original sequence, as shown in Figure 4. (The original sequence is notated
in quarter notes for convenience.) Successive elaborations of the original sequence are
defined by L→LH and H→LHH. When we realize these elaborations rhythmically, as
in the top two lines of Figure 4, the problem is immediately evident; the duration of the
low and high notes are not constant even within a single level. Compare the durations
for low notes on the middle line, which are either 1/2 or 1/3 of a beat. On the top line, low
notes occur in three different durations—1/4, 1/6, or 1/9 of a beat. Section 3 demonstrates
how to realize any self-similar Sturmian word as a rhythmic canon.

The second issue concerns the underlying structure of Sturmian canons. For exam-
ple, while the canonic potential of cΦ is readily apparent from the self-similar lines of
Figure 3, it is not clear by inspecting the first few lines of Figure 5 that the sequence
c√10/2 has any canonic potential at all. The second line does not being like the first
(LLH as opposed to LH), and the third and fourth lines begin on high rather than low
notes. Perhaps the fifth level is the same sequence of L and H as the first, but this not
clear from the limited excerpt—it is possible that level five continues with another high
note, thus beginning LHH. The contrast between the apparent canonic potential of the
two sequences is particularly striking given the surface similarities of the rhythmic re-
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Figure 5: Realization of c√10/2

alizations, especially on the first level. However, the lack of canonic potential evident
in the first few levels is misleading. In fact, c√10/2 gives rise to a quadruple canon with
consecutive voices (not levels!) related by both augmentation and retrograde.

Section 4 demonstrates how to answer questions regarding the canonic structure for
the rhythmic hierarchy associated with any mechanical sequence, ca, based entirely on
the continued fraction expansion of a. These questions include

1. Is the rhythmic hierarchy canonic?

2. If so, what is the exact augmentation/diminution factor between canonic voices?

3. Are the voices retrogrades of one another?

4. How many different canons are manifest in a single rhythmic hierarchy?

The answer to the last question opens up the possibility of double, triple, and n-tuple
Sturmian canons.1

2 Hierarchical structure
As suggested by the examples above, any Sturmian word, ca gives rise naturally to a
hierachy of infinite levels with the original sequence being level one, c1

a, which is then
segmented into groups, or runs, on level two, c2

a, runs of runs on level three, c3
a, and

so on. In this section we give a relatively informal description of the run heirarchies
of Sturmian words borrowing heavily from [6], to which the reader is referred for the
formal details.

For any level k ≥ 2 runs come in either a short, S k, or a long, Lk, form, with long
runs containing exactly one more run from the previous level than short runs, and with
S 1 = 0 and L1 = 1. On each level, either short or long runs will be more frequent.
If short runs are more frequent, there will be strings of one or more consecutive S k

separating singly occurring Lk: . . . S m
k LkS m

k . . .; if long runs are more frequent, then the
opposite case holds. In addition, each level will begin with either short or long runs,
depending on the previous level’s sequence of runs. Thus, on each level k, runs are
grouped into one of four different forms to become a run on level k + 1: S m

k Lk, LkS m
k ,

1Audio relatizations of all examples in this paper will be played, either live or prerecorded, for the pre-
sentation. Additionally, a Max/MSP patch for generating novel canons based on any real number is available
on the web.

4



S kLm
k , and Lm

k S k, where m is one of two consecutive natural numbers, depending on
whether the prevailing run on level k + 1 is short or long.

For ca, the specific form for each level k can be determined directly from the con-
tinued fraction expansion of a. Beginning with the specific case in which the fractional
part of the continued fraction contains no term equal to one (a = [a0; a1, a2, . . .], an∈N+ ,
1) and keeping this assumption in mind, the run forms occur as follows:

1. For level k, the relevant term of the continued fraction is ak.

2. Since the assumption is that ak , 1, short runs are more frequent.

3. The number of short runs separating each long run is either ak or ak−1, depending
on whether the prevailing run on level k + 1 is long or short. That is, S k+1 =

S ak−1
k Lk or LkS ak−1

k , Lk+1 = S ak
k Lk, or LkS ak

k .

4. Level k begins with S k or Lk depending on whether k is odd or even, respectively.

For continued fractions with terms that are equal to one, the situation is slightly
more complicated. First, if the relevant term for level k is a j = 1, then long runs will
be more frequent, with one or more Lk separating singly occurring S k. Second, the
number of long runs occurring consecutively will be either a j + a j+1 or a j + a j+1 − 1,
depending on whether the prevailing run on level k is long or short. Third, the relevant
term for level k+1 is not a j+1, as might be expected, but a j+2. This is necessary because
of the unique role that continued fraction terms of “1” play in the run hierarchy; terms
that are preceded by an odd number of consecutive “1”s are skipped over by what is
defined in [6] as the index jump function (adapted slightly to fit the present purposes):

Definition (Uscka-Wehlou 2009) For each a ∈ R \ Q the index jump function ia :
N+ → N+ is defined by ia(1) = 1 and ia(k + 1) = ia(k) + 1 + δ1(aia(k)) for k ≥ 1, where
δ j(x) equals 1 if x = j and 0 otherwise and a1, a2, . . . ∈ N

+ are the continued fraction
terms of a.

Putting the foregoing together we have:

1. The relevant term for level k is aia(k).

2. If aia(k) = 1, then long runs are more frequent; otherwise, short runs are more
frequent.

3. More frequent runs, either long or short, occur in string of either mk or mk − 1
consecutive runs, where mk = 1 + aia(k)+1 if aia(k) = 1, and mk = aia(k) otherwise.

4. Level k begins with either S k or Lk, depending on whether ia(k) is odd or even,
respectively.

3 Run-length and duration ratios
Now that we have a description of the run hierarchy we turn to measuring the length
and duration of runs in order to construct true rhythmic canons and to understand their
structure. First, we let |S k | and |Lk | represent the (binary-word) length of short and
long runs on level k measured in terms of the length of the corresponding word in the
original sequence, ca:
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Theorem 3.1 (Uscka-Wehlou 2009) Let a ∈ R \ Q and a = [a0; a1; a2, . . .]. For ca we
have for all k ∈ N+:

|S k | = qia(k+1)−1 and |Lk | = qia(k+1)−1 + qia(k+1)−2,

where ia is the index jump function, |S k | and |Lk | for k ∈ N+ denote the (binary word)-
length of short, respectively long runs of level k, and qk are the denominators of the
convergents on the continued fraction expansion of a.

For example, given a =
√

10/2 = [a; 1, 1, 2, 1, 1, 2, . . .], we have

k 1 2 3 4 5
|S k | 1 2 5 12 31
|Lk | 1 3 7 19 43

,

which corresponds precisely to the lengths (measured in sixteenth notes) of low and
high notes at each level in Figure 5.

As a consequence of the theorem, we can calculate ratios for the lengths of long
and short runs, the run-length ratio, for any level of the hierarchy, using the following
original corollary:

Corollary 3.2 Let a ∈ R \ Q and a = [a0; a1, a2, . . .]. For ca, the run-length ratio of
level k is

|Lk |

|S k |
= [1; aia(k), aia(k)−1, . . . , a1] .

Example: a =
√

2 = [1; 2]
According to the corollary, the sequence of ratios |Lk |/|S k | is |L1|/|S 1| = [1; 0] =

1/1, |L2|/|S 2| = [1; 2] = 3/2, |L3|/|S 3| = [1; 2, 2] = 7/5, with the series converging to
limk→∞ |Lk |/|S k | = [1; 2]. The fact that the run-length ratios converge to a single value
indicates that the sequence of runs for every level of the hierarchy is either identical to
or the retrograde of the original sequence, c√2. This property is true for only special
cases of ca where a is either [a0; n] or [a0; 1, n], n ∈ N+.

However, as a rhythmic sequence, this is not the case, since the ratios of durations
are not constant. Note that in Figure 6 no level is related to any other level by exact
rhythmic augmentation. We can rectify the situation in the following manner. Let
||S k || and ||Lk || be the rhythmic duration of S k and Lk, respectively, and let β1 = [1; 2].
By using irrational duration ratios, such that ||L1|| = β1 · ||S k ||, we can ensure that the
duration ratio between long and short runs is constant at every level of the hierarchy,
||Lk ||/||S k || = β1, k ∈ N+. See Figure 7, in which durations with square note heads are√

2 times as long as their oval counterparts.2

More generally, after defining the durations for S 1 and L1, we can define the run-
duration ratios recursively, such that

||S k+1|| =
(
1 + δ0

(
aia(k+1)

) (
aia(k) − 2

))
· ||S k || +(

1 + δ1
(
aia(k+1)

) (
aia(k) − 2

))
· ||Lk || ;

||Lk+1|| =
(
1 + δ0

(
aia(k+1)

) (
aia(k) − 1

))
· ||S k || +(

1 + δ1
(
aia(k+1)

) (
aia(k) − 1

))
· ||Lk || .

6



Level 1

Level 2

Level 3

Level 4

œ œ œ œ œ
.œ œ
.œ œ
.œ œ

œ œ œ œ œ
.œ œ
.œ œ
.œ œ

œ œ œ œ œ œ œ
.œ œ œ
.œ ˙
.œ ˙

œ œ œ œ œ
.œ œ
.œ œ
.œ œ

œ œ œ œ œ œ œ
.œ œ œ
.œ ˙
.œ ˙

œ œ œ œ œ
.œ œ
.œ œ
.œ œ

œ œ œ œ œ
.œ œ
.œ œ
.œ œ

œ œ œ œ œ œ œ
.œ œ œ
.œ ˙
.œ ˙

Figure 6: Realization of the first four levels of c√2. In each level, the lower note
corresponds to S k and the upper note to Lk. Note that the run-duration ratios are not
constant from one level to another.
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Figure 7: Realization of the first four levels of c√2 with irrational durations indicated
by square note heads. The ratio between long and short durations for each level is

√
2.

The duration for each ||S k || and ||Lk || (measured in eighth notes) is ||S 1|| = 1, ||L1|| =
√

2,
||S 2|| = 1 +

√
2, ||L2|| = 2 +

√
2, ||S 3|| = 3 + 2

√
2, ||L3|| = 4 + 3

√
2, ||S 4|| = 7 + 5

√
2,

||L4|| = 10 + 7
√

2.

7



Level 1

Level 2

Level 3

Level 4

œ œ – œ – œ – œ –
œ J– œ – œ – œ –
˙ jœ !
˙ Jœ !

œ œ – œ – œ – œ –
œ J– œ – œ – œ –
˙ jœ !
˙ Jœ !

œ œ – œ – œ – œ – œ –
œ J– œ – œ – œ – œ –

.˙ ! J–

.˙ ! J–

œ œ – œ – œ – œ –
œ J– œ – œ – œ –
˙ jœ !
˙ jœ !

œ œ – œ – œ – œ – œ –
œ J– œ – œ – œ – œ –

.˙ ! J–

.˙ ! j–

»(!6 – 1) qq– 
Figure 8: Realization of the first four levels of c√6.

Example: a =
√

6 = [2; 2, 4]
Because the repeating portion of this continued fraction has a period of two, the

run-length ratios will oscillate between two different converging series as k increases:

|L1|/|S 1| = [1; 0] = 1/1 |L2|/|S 2| = [1; 2] = 3/2

|L3|/|S 3| = [1; 04, 2] = 11/9 |L4|/|S 4| = [1; 2, 4, 2] = 29/20

...
...

β1 = lim j→∞
|L2 j+1 |

|S 2 j+1 |
= [1; 4, 2] =

√
6

2 β2 = lim j→∞
|L2 j |

|S 2 j |
= [1; 2, 4] =

√
6 − 1

In this case, setting ||L1|| = β1 · ||S 1|| ensures that ||Lk ||/||S k || is β1 if k is odd and β2 if k
is even. Thus, any two levels of the hierarchy that are either both odd or both even will
be related by exact rhythmic augmentation/diminution. (See Figure 8.)

Example: a = [a0; 1, 1, 2, 3]
In this case, although the repeating portion of the continued fraction has a period of

four, there is an inessential term (the second “1” in the group of four which is skipped
by the index jump function), so the ratio |Lk |/|S k | will converge on three values:

|L1|

|S 1|
= [1; 0],

|L4|

|S 4|
= [1; 3, 2, 1, 1], . . . , β1 = lim

j→∞

|L3 j+1|

|S 3 j+1|
= [1; 3, 2, 1, 1] ;

|L2|

|S 2|
= [1; 1, 1],

|L5|

|S 5|
= [1; 1, 1, 3, 2, 1, 1], . . . , β2 = lim

j→∞

|L3 j+2|

|S 3 j+2|
= [1; 1, 1, 3, 2] ; and

|L3|

|S 3|
= [1; 2, 1, 1],

|L6|

|S 6|
= [1; 2, 1, 1, 3, 2, 1, 1], . . . , β1 = lim

j→∞

|L3 j|

|S 3 j|
= [1; 2, 1, 1, 3] .

(See Figure 9.)
More generally, for a = [a0; a1, a2, . . . , an], the series ||Lk ||/||S k || will converge to

p ≤ n different values, β1, . . . , βp. (Specifically, noting that the ratio of k and ia(k)

2While difficult, it is possible to perform such rhythms either using rational approximations (Callender
2012) or with the aid of click tracks, and in any case they can be realized easily enough on a computer.
These rhythms will tend to be perceived in terms of simpler rational ratios. For instance, I hear the rhythms
of figure 7 as variants of 2 + 3 and 2 + 2 + 3 rhythms in which the final duration is very subtly shortened.
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Figure 9: Realization of the first four levels of c[a0;1,1,2,3].

converges, p = n limk→∞
k/ia(k).) We will say that p is the hierarchical periodicty of ca.

In all cases, setting ||L1|| = β1 · ||S 1|| will ensure that run-duration ratio is constant for
all levels:

||Lk ||

||S k ||
= βk mod p .

(We will refer to β0 as βp.)

4 Structural properties of Sturmian p-tuple canons
In this section, we describe the canonic structure arising from the hierarchical levels of
ca when a has a repeating continued fraction or, equivalently, a is a quadratic surd.

Let a = [a0; a1, a2, . . . , an] and p be the hierarchical periodicity of ca with run-
length convergents of β1, . . . , βp. If ||L1||/||S 1|| = β1, then the resulting hierarchical
rhythmic structure, ra,β1 , is a Sturmian p-tuple canon, written Ca.

The p individual canons of Ca, canon 1, canon 2, and so on to canon p, are written
Ca,1,Ca,2, . . . ,Ca,p. For 1 ≤ j ≤ p, the hierarchical levels k = j+ p, j+2p, . . . constitute
the consecutive voices of canon j, Ca, j = rk≡ j mod p

a,β1
. If p and n are opposite in parity

(one being odd and the other being even), then consecutive voices of each canon, 1
through p, are retrogrades of one another. For all p, odd or even, any voice of a given
canon is an exact rhythmic augmentation of the previous voice by a factor of ||S p+1||.
That is, for any S k and Lk, ||S k+p|| = ||S k || · ||S p+1|| and ||Lk+p|| = ||Lk || · ||S p+1||.

Given the cyclic nature of the p-tuple canon, identifying any one of the individual
canons with level 1 is arbitrary. In reality, the p individual canons form a family of
canons that always occur together. Beginning with any one of the individual canons
will lead to the exact same p-tuple structure.

As an application of the above, we detail the canonic structure of the three exam-
ples from the Section 3.

Example: a = [a0; 2]
Since the hierarchical period of ca is one, the corresponding Sturmian canon con-

sists of a single canonic rhythm imitated in augmentation and possibly retrograde at
all levels of the hierarchy. Specifically, consecutive voices are related by retrograde
and augmentation by a factor of ||S 2|| = 1 +

√
2. We can graph the canonic structure

of C[a0;2] as in Figure 10, with double arrows indicating retrograde and with both the
augmentation factor and run-duration ratios included.

Example: a =
√

6 = [2; 2, 4]
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1 2 3 . . .

Canon 1
β1 =

√
2

C√2

||S 2|| = 1 +
√

2

Figure 10: Graph of canonic structure for C√2. The numbers 1, 2, . . . represent succes-
sive levels of the hierarchy. Double arrows indicate that the levels are in a retrograde
relationship. ||S 2|| gives the augmentation factor between consecutive voices of the
canon and β1 gives the ratio between long and short duration at each level.

12 34 . . .. . .

C√6

||S 3|| = 5 + 4 · [1; 4, 2] = [9; 1, 8]

Canon 1
β1 = [1; 4, 2]

Canon 2
β2 = 1; 2, 4]

Figure 11: Graph of canonic structure for C√6.

Since the hierarchical period of c√6 is two, C√6 is a Sturmian double canon with
two different rhythmic patterns occurring at alternate levels. Consecutive voices of each
canon occur at every other level of the hierarchy, are not related by retrograde (since
both p and n are even), but are augmentations by a factor of ||S 3|| = 5 + 4 · [1; 4, 2] =

[9; 1, 8]. The corresponding graph of the canonic structure of C√6 is given in Figure
11.

It is interesting to note that while the fractional parts of
√

2 and
√

6 are very close,
differing by only 0.035 . . ., their respective canonic structures are very different. In-
deed, the structure of C√2 is much more similar to Cφ, both being single canons with
runs on each level k being comprised of two or three runs from level k − 1. The main
differences between C√2 and Cφ is that the former is dominated by short runs and con-
secutive voices are related by retrograde while the latter is dominated by long runs and
contains no retrogrades. Both of these properties for the latter are a consequence of the
continued fraction expansion of φ = [1; 1], in which all terms are equal to 1.

Example: a = [a0; 1, 1, 2, 3]
As noted before, the hierarchical period of c[a0;1,1,2,3] is three rather than four due to

the presence of an inessential “1” in the terms of the repeated continued fraction. Thus,
C[a0;1,1,2,3] is a Sturmian triple canon with three different rhythmic patterns occurring in
a cycle of length three. Consecutive voices of each canon occur at every third level of
the hierarchy, are related by retrograde (since p is odd while n is even) as well as aug-
mentation by a factor of ||S 4|| = 7 + 10 · [1; 3, 2, 1, 1] = [19; 1, 18]. The corresponding
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1

2

3

4

5

6

. . .

. . .

. . .

C[a0;1,1,2,3]

||S 3|| = 7 + 10 · [1; 3, 2, 1, 1] = [19; 1, 18]

Canon 1
β1 = [1; 3, 2, 1, 1]

Canon 2
β2 = 1; 1, 1, 3, 2]

Canon 3
β3 = 1; 2, 1, 1, 3]

Figure 12: Graph of canonic structure for C[a0;1,1,2,3].

graph of the canonic structure is given in Figure 12.
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