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This paper proposes a set of methods and a framework for evaluating, modeling, and predicting
group interactions in computer-mediated communication. The method of sequential analysis is
described along with specific software tools and techniques to facilitate the analysis of message–
response sequences. In addition, the Dialogic Theory and its assumptions are presented to establish
a theoretical framework and guide to using sequential analysis in computer-mediated communica-
tion research. Step-by-step instructions are presented to illustrate how sequential analysis can be
used to measure the way latent variables (e.g., message function, response latency, communication
style) and exogenous variables (e.g., gender, discourse rules, context) affect how likely a message is
to elicit a response, the types of responses elicited by the message, and whether or not the elicited
sequence of responses (e.g., claim → challenge → explain) mirror the processes that support group
decision-making, problem-solving, and learning.

Introduction

Current research in computer-mediated communication (CMC) is in need of alter-
native theories, methods, and software tools to achieve a deeper and more thorough
understanding of CMC and its effects on group interaction, group performance, and
learning (Garrison, 2000; Koschmann, 1999; Mandl & Renkl, 1992). One approach
is to examine group processes by studying the sequential nature of messages and
responses exchanged between students to determine how particular processes, and
the variables that affect the processes, help or inhibit groups from achieving the
desired outcomes (Jeong, 2003a; Koschmann, 1999). As a result, a process-oriented
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approach to studying CMC enables researchers to develop computational models to
explain and predict patterns in group interaction based on specific characteristics of
the message and the conditions surrounding the exchange of messages.

At this time, content analysis is one of the current methods used in CMC research.
Its primary purpose is to identify message categories and measure the frequency of
messages observed in each category (Rourke, Anderson, Garrison, & Archer, 2001).
This approach generates results that are mainly descriptive rather than prescriptive in
nature, reporting for example the frequencies of arguments, challenges, and explana-
tions observed in a discussion. However, message frequencies provide little informa-
tion to explain or predict how participants respond to given types of messages (e.g.,
argument → challenge versus argument → simple agreement), how response patterns
are influenced by latent variables (e.g., message function, content, communication
style, response latency) and exogenous variables (e.g., gender, personality traits,
discussion protocols, type of task), and how particular response patterns help to
improve group performance to achieve desired outcomes. Therefore, new approaches
are needed to examine to what extent messages elicit responses based on what is said
in conjunction with when, how, who, and why messages are presented, and whether
or not the elicited responses help produce sequences of speech acts that support crit-
ical discourse (e.g., claim → challenge → explain) and group performance in decision-
making, problem-solving, and learning.

What follows is a detailed description of the tools, techniques, and the seven
steps to using sequential analysis to study group interaction in CMC, based on
Bakeman and Gottman (1997) and the previous studies of event sequences in
CMC (Jeong, 2003a, b, c, 2004a, 2005b; Jeong & Joung, in press). In general, this
method has also been used in studies on interpersonal communication conducted
over the past 30 years, which include studies on the conversational patterns
between married couples, children at play, mother–infant play (Bakeman & Gott-
man, 1997, pp. 184–193; Gottman, 1979), and studies on human–computer inter-
action (Olson, Herbsleb, & Rueter, 1994). This method has been claimed to be the
“missing factor” in research on the effects of computer-mediated environments and
computer-based instruction (England, 1985; King & Roblyer, 1984). The following
discussion begins with a proposed set of theoretical assumptions to establish the
foundation for the proposed metrics for measuring group interaction, specific meth-
ods and software tools to support sequential analysis, and research designs for
investigating the effects of latent and exogenous variables on group interaction
patterns.

Theoretical Framework

The dialogic theory (Bakhtin, 1981) provides a theoretical framework for reconcep-
tualizing and operationalizing group interaction in collaborative learning
(Koschmann, 1999). In this theory, language is viewed as part of a social context in
which all possible meanings of a word interact, possibly conflict, and affect future
meanings. As a result, meaning does not reside in any one utterance (or message).
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Instead, meaning emerges from examining the relationship between multiple utter-
ances (e.g., a message and replies to the message). Through the process of examin-
ing the interrelationships and conflicts that emerge from a social exchange, meaning
is renegotiated and reconstructed through extended social interaction. Conflicts that
emerge from the interactions are what drive further inquiry, reflection, and articula-
tion of individual viewpoints and underlying assumptions.

Support for this theory can be drawn from extensive research on collaborative
learning showing that conflict and the consideration of both sides of an issue is
needed to drive inquiry, reflection, articulation of individual viewpoints, and under-
lying assumptions, and to achieve deeper understanding (Johnson & Johnson, 1992;
Wiley & Voss, 1999). The need to explain, justify, or understand is felt and acted
upon only when conflicts or errors are brought to attention (Baker, 1999). This
process not only plays a key role in increasing students’ understanding, but also in
improving group decision-making (Lemus, Seibold, Flanagin, & Metzger, 2004).

As a result, the two main assumptions are that conflict is produced not by ideas
presented in one message alone, such as an argument or claim, but by the juxtaposi-
tion of opposing ideas presented in a message and responses to the message; and that
conflicts produced in exchanges help to trigger subsequent responses that can serve
to verify (e.g., argument → challenge → evidence) and justify (e.g., argument →
challenge → explain) stated arguments and claims. These assumptions imply that we
should be focusing on analyzing the frequency of specific message–response pairs
(e.g., argument → challenge, challenge → explain) and not the frequency of messages
alone (e.g., arguments, challenges, explanations).

Step 1: Choose a metric for measuring and comparing group interaction patterns

A number of possible metrics can be used to analyze and identify patterns in
message–response sequences. The two metrics that are perhaps the most meaningful
are transitional probabilities—which determine, for example, what percentage of the
observed responses to arguments (ARG) are challenges (BUT) versus supporting
evidence (EVI) versus explanations (EXPL)—and mean response scores—the mean
number of specific responses elicited per message category, such as the mean number
of challenges, supporting evidence, or explanations elicited per stated argument.

Transitional probabilities are computed by tallying the frequency of a particular
response posted in reply to a particular message type and by reporting the results in
a frequency matrix, as illustrated in Table 1. The observed frequencies are converted
into relative frequencies to determine the transitional probabilities for each response
type for each message category (see Table 2). To determine whether or not the tran-
sitional probabilities of each response to each message category are significantly
higher or lower than expected, and to determine whether a pattern exists in the way
participants respond to messages in a particular category, Z scores are computed and
reported in a Z-score matrix (see Table 3). As opposed to using the independence
chi-square statistic, this Z-score statistic proposed by Bakeman and Gottman (1997,
pp. 108–111) takes into account not only the observed total number of responses to
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a particular message category, but also the marginal totals of each response type
observed across all message types.

The transitional probabilities presented in Table 2 are represented in a state

diagram (shown in Figure 1) that provides a Gestalt view of the group processes and
a means to visually identify response patterns and predict event sequences that are
most likely to occur. For example, the diagram can be used to determine or predict

Table 1. Frequency matrix of responses to messages across message categories

ARG BUT EVID EXPL Replies
No 

replies Givens
% 

Targets
% 

Givens

ARG 3 101 73 16 193 35 112 0.25 0.30
BUT 3 82 88 91 264 24 149 0.35 0.40
EVID 0 64 50 48 162 22 35 0.21 0.09
EXPL 0 51 22 71 144 55 74 0.19 0.20

14 307 233 229 763 136 370

The number of challenges posted in reply to arguments (in bold) was higher (n = 101) than 
expected. The number of challenges posted in reply to challenges (underlined) was significantly 
lower (n = 82) than expected.

Table 3. Z-score matrix

ARG BUT EVID EXPL

ARG −0.34 3.96 2.54 −−−−7.62
BUT −1.05 −−−−3.76 1.22 1.95
EVID −1.96 −0.21 0.10 −0.12
EXPL −1.82 −1.31 −−−−4.41 5.61

Z scores < −2.32 reveal probabilities (bolded and underlined) that were significantly lower than 
expected. Z scores > 2.32 reveal probabilities (bolded) that were significantly higher than expected.

Table 2. Transitional probability matrix

ARG BUT EVID EXPL Replies No replies Givens
Reply 
rate

ARG 0.02 0.52 0.38 0.08 193 35 112 0.69
BUT 0.01 0.31 0.33 0.34 264 24 149 0.84
EVID 0.00 0.40 0.31 0.30 162 22 35 0.37
EXPL 0.00 0.35 0.15 0.49 144 55 74 0.26

14 307 233 229 763 136 370 0.52

The proportion of replies to ARG that were BUT (52%) was significantly higher than expected. 
The proportion of replies to BUT (31%) was significantly lower than expected.
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how often arguments will elicit challenges versus counter-arguments, and in turn to
predict how often challenges will elicit explanations versus counter-challenges
to determine, overall, how likely the observed patterns of interaction will lead
to constructive dialog (e.g., argument → challenge → explanation) versus non-
productive dialog (e.g., argument → opposing argument).
Figure 1. Transitional state diagramThe second metric, the mean number of specific responses elicited per message
category or mean response scores, determines how many times a given type of
message is able to elicit a particular type of response. This metric describes the overall
level of performance by measuring, for example, the mean number of challenges

Figure 1. Transitional state diagram
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elicited per argument and the mean number of explanations elicited per challenge,
which is similar to measuring the percentage of arguments left unchallenged and the
percentage of challenges left unresolved. As a result, this particular metric can be
used to determine at what level participants are critically analyzing arguments (e.g.,
argument → challenge → explain), or to what extent participants engage in
processes (e.g., argument → counter-argument, argument → no response) that
block critical discourse. By using mean scores, statistical methods like t tests and
analyses of variance can be used to test for differences in response patterns between
experimental conditions, and effect sizes can be computed to determine to what
extent the observed differences are meaningful differences.

Between these two metrics—transitional probabilities and mean response scores—
transitional probabilities can be used to explain observed differences in mean
response scores. For example, one group might exhibit a tendency to respond to
arguments with more challenges than with supporting evidence, whereas another
group might exhibit an opposite tendency to respond to arguments with more
supporting evidence but fewer challenges. If a significant difference is found in the
mean number of challenges elicited per argument between groups, the differences in
interaction patterns would suggest that the second group posted fewer challenges in
response to arguments because more time and resources were allocated by the group
to developing evidence to support arguments leaving less time and resources to chal-
lenge arguments. As a result, both metrics can be used at the same time, with one
metric used as the main dependent variable and the other used for post-hoc analysis.
However, transitional probabilities are best used as the main dependent variable
when conducting an exploratory study, whereas mean response scores are best for
conducting experimental studies.

Step 2: Specify a priori tests for specific message–response pairs

When using either of the metrics already described, the specific message–response
pairs (or event pairs) examined in a study should be defined a priori because the
total number of possible event pairs grows exponentially with the addition of each
message category to the coding scheme. For example, a coding scheme consisting of
four categories (e.g., argument, challenge, explain, evidence) produces a 4 × 4
matrix resulting in 16 possible event pairs (e.g., argument → challenge, challenge →
argument, challenge → explain, explain → challenge, etc.). Testing all 16 event pairs
for differences in mean response scores would be too large a number of contrasts to
adequately control for Type I error (finding significant differences when the differ-
ences are actually the result of random chance alone). Power can be increased by
testing only a select number of event pairs—particularly those that are believed to
support group performance (e.g., argument → challenge, challenge → explain). To
identify the most important sequences to examine in your study, review existing
literature and research that present specific models for completing specific tasks.
The other alternative is to closely examine social exchanges while groups perform a
particular task (Mandl & Renkl, 1992) and identify the subordinate skills and skill
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sequences needed to successfully complete the task by using the techniques for
analyzing intellectual skills (Dick, Carey, & Carey, 2005 pp. 38–56).

Step 3: Collect discussions and messages parsed and classified by speech act

The next step in sequential analysis is to parse the discussion transcripts into discrete
units of analysis. Each unit must be classified by function (or speech act) based on
an established coding scheme using the same procedures for conducting quantitative
content analysis (Rourke et al., 2001). However, the process of parsing and coding is
fraught with a number of methodological challenges where the reliability, validity,
and feasibility of parsing and coding messages pose significant problems. Messages
often address multiple topics or functions, making the process of parsing each
message into discrete segments extremely difficult to achieve with high interrater
reliability. As a result, researchers have debated the merits of parsing and categoriz-
ing messages by sentence, paragraph, message, unit of meaning, and speech act. The
problem with interrater reliability is then compounded when one attempts to map
the links between units presented within a message with units presented within
responses to the message (Gunawardena, Lowe & Anderson, 1997; Newman,
Johnson, Cochrane, & Webb, 1996).

One technique for resolving this problem is to instruct participants to classify,
label, and post messages to address one, and only one, function at a time (e.g., argu-
ment, evidence, challenge, explanation). See example instructions in Figure 2 for
structuring online group debates. By using this approach, each message is associated
with one, and only one, speech act. As a result, the process of parsing messages into
discrete units of analysis and the challenges associated with this process are essen-
tially minimized, if not eliminated. Also eliminated are the challenges associated
with the process of mapping the links between speech acts observed in messages and
responses to messages. The additional advantage of using this approach is that larger
data sets can be more easily produced in order to generate a sufficient number of
event pairs within the probability matrix to test transitional probabilities and mean
response scores.
Figure 2. Example instructions on how to label messages during the online debatesMessage labeling has been implemented in a number of computer-supported
collaborative argumentation systems to scaffold argumentation and problem-solving
(Carr & Anderson, 2001; Cho & Jonassen, 2002; McAlister, 2003; Sloffer, Dueber,
& Duffy, 1999; Veerman, Andriessen, & Kanselaar, 1999) and to enable participants
to see the overall structure and organization of their arguments (see Figure 3).
However, message labeling in itself can affect group interactions and the validity of
the findings. At this time, the effects of message labeling have not yet been fully
investigated and initial findings are still inconclusive (Beers, Boshuizen, &
Kirschner, 2004; Jeong & Joung, in press; Strijbos, Martens, Jochems & Kirschner,
2004). Nevertheless, message labeling seems be a practical, although not perfect,
solution to address the problems that have prevented previous researchers from
examining event sequences in CMC. Regardless, the interactions and findings
produced with this type of approach will be useful for improving the design and
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implementation of computer-supported collaborative argumentation, where
approaches like message labeling are used to structure and facilitate discourse.
Figure 3. Example of online debate with labeled messages in a Blackboard™ forum

Step 4: Download messages with message threads intact

Once the group discussions are completed and all the posted messages have been
labeled by the participants, the message threads must be downloaded and prepared
for analysis. At this time, little (if any) software is available for downloading discus-
sions from systems in current use. Among the systems that support downloading,
messages are directed into flat files where the explicit links between multi-threaded
messages are not recorded and therefore do not remain intact. Even with existing
qualitative content analysis tools, such as Atlas-ti™ and NUDIST™, and tools like
General Sequential Querier (GSEQ™) for performing sequential analysis (Bake-
man & Quera, 1995), the multi-threaded nature of discussions are difficult to
retain and analyze. However, the computer program ForumManager (Jeong,
2004c) is under development and has been used in recent studies to harvest
messages from Blackboard™, a course management system (see Figure 4) into
Microsoft Excel™. Once in Excel™, the message headers and full texts are

Figure 2. Example instructions on how to label messages during the online debates
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archived and the message threads are structurally maintained to enable the user to
read and analyze message threads.
Figure 4. Screenshot of ForumManager™ for downloading discussion threads

Step 5: Prepare data for analysis according to variables under investigation

To prepare the data for sequential analysis, the Discussion Analysis Tool (DAT) has
been developed (Jeong, 2005a) and used to parse out the students’ labels from
message headers (see column 3 in Figure 5) so that the codes are recorded into
column 1 in an Excel™ worksheet. Note that the message labels in Figure 5 identify
the message category and the debate team that posted the message (s = supporting
team, o = opposing team). Once extracted, the codes must be checked for interrater
reliability against the Cohen Kappa coefficient (Rourke et al., 2001, p. 6). Next, the
code sequences must be extracted and explicitly mapped using a numerical system
based on the thread level of each message (see column 2 in Figure 5).
Figure 5. Screen shot of DAT for processing and analyzing message sequencesAt this point, the codes in column 1 can be manipulated to examine group interac-
tion patterns from a number of different perspectives depending on the variables
under investigation. The present data in column 1 of Figure 5 produce the
transitional probability matrix in Figure 6. This matrix can be used to compare
performances between the two debate teams. Such a comparison might be meaning-
ful, for example, if the members of the supporting team are all male and the members
of the opposing team are all female. Comparing the transitional probabilities in the

Figure 3. Example of online debate with labeled messages in a Blackboard™ forum
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Figure 4. Screenshot of ForumManager™ for downloading discussion threads

Figure 5. Screen shot of DAT for processing and analyzing message sequences
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upper-right quadrant of the probability matrix would reveal how females on the
opposing team responded to the males on the supporting team, and the lower-left
quadrant would reveal how the males on the supporting team responded to the
females on the opposing team. Each quadrant can be converted into a state diagram
to visually compare, identify differences, and model interaction patterns produced
between genders.
Figure 6. Transitional probability matrix of event sequences produced by DATTake another example where members of both teams are mixed in gender, and the
goal is to determine whether differences exist in the way males respond to males
versus females and the way females respond to females versus males. To examine
this question, the team tags in the present codes (“s” and “o”) shown in column 1 of
Figure 5 can be stripped out and replaced with the gender of the participant that
posted the message (e.g., ARGm, CRITf, EVALm, etc.) by using the “find and
replace” function in Excel™ to strip the tags, substituting each student name with
the corresponding gender tag, and combining the code and gender tag with the “&”
function. The new codes can then be sequentially analyzed by DAT to test for differ-
ences in interaction patterns between genders or any other individual traits (e.g.,
extroversion, cognitive style) using this same procedure. The procedure can also be
used to analyze the effects of latent variables such as the use of supportive language
(e.g., I agree, thank you, inviting replies, ask questions), like the results of a recent
study shown in Figure 7 (Jeong, 2005b), and qualifiers when making a statements
(e.g., maybe, I think) by replacing the team tags in column 1 with tags to indicate
whether or not the message contained supportive language (e.g., CRITs versus
CRIT), or qualifiers (e.g., ARGq versus ARG). This approach in particular, exam-
ines the combined effects of “how” messages are conveyed and the function of
messages on the way participants respond to messages.

Figure 6. Transitional probability matrix of event sequences produced by DAT
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Figure 7. Results of a study comparing interactions produced by messages presented with versus without supportive style of communication. For example: The 32 arguments that were presented using a supportive style of communication elicited 21 total responses, where 90% of these responses were challenges. Probabilities presented with “+” indicate those that were significantly higher than the expected probability with Z scores > 2.32 at p < .01.To test for differences in interaction patterns produced by all-male debates
versus all-female debates (or mostly male versus mostly female debates), one can
conduct an experimental study where the discussions generated by each group are
separately collected and analyzed. Therefore, imagine that the probability matrix in
Figure 6 was produced by an all-male group. To examine the interaction patterns
between the males, the team tags in column 1 are removed to produce a 4 × 4
probability matrix (instead of an 8 × 8 matrix) using only the codes ARG, BUT,
EVI, and EXP (without tags). The same procedure is used to separately analyze
the response patterns in the all-female group discussion. Then compare the result-
ing Z scores and state diagrams between the all-male and all-female groups to see,

Figure 7. Results of a study comparing interactions produced by messages presented with versus 
without supportive style of communication. For example: The 32 arguments that were presented 

using a supportive style of communication elicited 21 total responses, where 90% of these 
responses were challenges. Probabilities presented with “+” indicate those that were significantly 

higher than the expected probability with Z scores > 2.32 at p < .01.
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for example, whether significant differences exist in response patterns, and whether
or not the gender composition of discussion groups affects, for example, the mean
number of challenges posted in response to arguments and the mean number of
explanations posted in respond to challenges. This experimental design can also be
used to test the effects of other exogenous variables—contextual variables that
cannot be directly observed within the messages—choice of debate rules,
constraints on response sequences (Jeong, 2003b), choice of message labels (Jeong
& Joung, in press ), assigning students to teams, and asynchronous versus real-time
discussions.

Step 6: Compute transitional probabilities, Z scores and state diagrams

Once the codes have been prepared for analysis, DAT combs through each message
thread to compute the frequency, transitional probability, and Z score for each
message–response pair. DAT also computes the frequency distributions for the
observed responses and messages, the number of messages that did not elicit a
response, and the overall response rate. At this time, the frequency of event pairs for
up to six categories can then be selected to produce state diagrams such as those
presented in Figures 1 and 7. In addition, DAT supports the analysis of mean
response scores by outputting the necessary numerical data for computing and test-
ing mean response scores in statistical analysis programs like SPSS™ and Systat™ to
conduct t tests, analyses of variance, regression analysis, multi-dimensional scaling,
and other tests that might prove useful in gaining further insights into group interac-
tion patterns and the effects of latent and exogenous variables.

The alternative to DAT is the GSEQ™ developed by Bakeman and Quera
(1995). GSEQ™ performs a wide range of statistical functions that analyzes event
sequences, timed-event sequences, interval sequences, and cross-classified events.
What separates DAT from GSEQ™ is that DAT analyzes multi-threaded or multi-
branching sequences of events (often observed in online threaded discussions, as
illustrated in Figure 3), extracts message labels (if available) from message headers
in discussion transcripts, makes the formulas and functions used to compute proba-
bilities and Z scores more transparent within MS Excel™, provides immediate
access to MS Excel™’s tools and functions for data preparation and analysis, identi-
fies the location of each event pair tallied in frequency matrices, generates transi-
tional state diagrams, and produces diagrams using arrows with varying densities to
help discriminate response patterns.

Step 7: Interpret the transitional probabilities for interaction patterns

Arriving at a meaningful interpretation of interaction patterns revealed from the
sequential analysis is often a difficult process due to the large number of statistics
associated with each possible event pair and the inherently complex nature of
group interaction. However, these difficulties can be largely avoided by focusing
the analysis on only those event sequences that exemplify the processes believed to
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improve group performance and specified in your a priori hypotheses. The final
word of caution is that when a particular pattern of interaction is revealed in a Z-
score matrix (where the transitional probability of an event sequence is significantly
higher or lower than the expected frequency), check to see that the finding is
supported by sufficient cell frequencies in the frequency matrix for the given
message–response pair, and the findings are not biased by coding errors in the
message labels.

Implications for Instruction and Research

These tools and methods provide a road map to studying and modeling group inter-
action and the effects of specific variables on group interaction in CMC. This
approach to studying online interaction will produce the research needed to guide
instructional designers in developing collaborative learning activities that focus not
on optimizing the sequencing of instructional content, but on optimizing the
sequencing of speech acts to maximize group performance. Specifically, the methods
and tools for supporting sequential analysis in CMC research can help produce the
much-needed empirical research that designers need for improving online learning
environments. In terms of the long-range implications, the proposed methods will
provide a starting point for building computational models to explain, predict, and
perhaps simulate group discussions in computer-mediated environments. Computa-
tional models of group processes combined with the use of techniques such as
message labeling may serve as the mechanism for building intelligent discourse envi-
ronments and simulators, and using them as learning objects as they dynamically
model, catalog, and strategically sequence speech acts and content acquired from
messages accumulated over time to facilitate, optimize, and/or simulate group
discussions.

More detailed discussions of the limitations of the methods described are
presented in the cited references. Nevertheless, some of the main limitations identi-
fied in previous studies provide additional insights on how best to conduct future
research using this approach. The following are some of the following recommen-
dations: Examine multiple discussion groups to prevent the idiosyncrasies of any
one particular group from exerting too large an influence on the results; examine
the interrelationship between multiple variables and their relative impact using
multiple regression; examine the links between interaction patterns and group
performance; expand the analysis to measure the frequency of three-event
sequences to determine whether some event pairs are more effective in eliciting
desired responses than other event pairs; identify sequences that distinguish experts
from novices using multidimensional scaling; and test and validate process models
across different types of tasks using new message categories and labels to facilitate
discussions and to identify new patterns of interaction that support group
performance.

In conclusion, these methods and tools can be used to model interaction patterns
in any social exchange, including exchanges between instructors and students,
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coaches and athletes, counselors and patients, and humans and computers. Partici-
pants in face-to-face discussion can be asked to state their function during individual
turns to facilitate the analysis of interaction patterns observed in face-to-face
communications. This would lay the groundwork to studying the differences
between face-to-face versus computer-mediated discussions in terms of interaction
patterns produced by the presence versus absence of non-verbal behaviors, and how
the differences in patterns contribute to group performance. Finally, these methods
can also be used to model sequential patterns in cognitive operations performed by
the individual while performing individual tasks. The hope is that these methods and
tools will one day enable more researchers to apply sequential analysis to study and
improve human learning and performance.
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