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Abstract


This case study examined three structural attributes observed in students’ causal maps (total links, temporal flow, horizontal location of outcomes nodes) and their relationship to the accuracy of students’ maps (number of correct root causes, number of root cause links) to determine the attributes that should be emphasized during map construction. The findings from regression analyses suggest that increasing temporal flow can substantially increase accuracy in number of correctly identified root causes, and placing limits on the total number of causal links can increase the number of correctly identified root cause links. Implications of these findings on how to manipulate the causal mapping task and tools and directions for future research are discussed.
Introduction


Causal maps, a network of nodes and links that define the causal relationships between nodes, can be used in science education as a tool to teach and assess learners’ systemic understanding of complex problems and phenomena (Ruiz-Primo & Shavelson, 1996). Given that causal maps in theory represent learner’s cognitive structures, their complex reasoning, and conceptual development (Jonassen, 2008), causal maps can be and have been used to elicit, articulate, refine, assess, and improve understanding, analysis, and the identification of the causes and causal mechanism underlying complex problems. Improvements in students’ understanding have been observed particularly when students work both individually and collaboratively to construct their own maps as opposed to simply presenting students the instructor or expert maps (Nesbit & Adesope, 2006). Maps can be used to support collaborative learning when students compare their maps to identify, trigger, and focus group discussions around key differences in viewpoints and understanding (Jeong, 2009 & 2010a). 

A growing number of studies on causal maps and other types of maps (e.g., concept maps) have formulated various metrics to measure the accuracy and structural attributes of students’ maps (parsimony, temporal flow, total links, connectedness) – particularly attributes believed to be correlated to map accuracy and attributes that can be potentially used to generate guidelines or constraints to help students create more accurate maps (Scavarda et al., 2004; Ifenthaler, Masduki & Seel, 2009; Jeong, 2009; Plate, 2010). Studies have been conducted to determine how different constraints imposed on the map construction process affect student’s maps and learning – constraints like imposing hierarchical order by allowing students to move and re-position nodes (Ruiz-Primo et al., 1997; Wilson, 1994), providing terms for nodes (Barenholz & Tamir, 1992), providing labels for links (McClure & Bell, 1990), and allowing more than one link between nodes (Fisher, 1990). In addition, studies have been conducted to develop software tools to automate and reliably measure both the accuracy and the structural attributes of maps. Software programs like HIMATT (Ifenthaler, 2008) and jMAP (Jeong, 2010b) are being used to address issues of rater reliability and validity by using software to automate measurements that can be used to test the correlation between different structural attributes and accuracy of students’ maps (Ifenthaler, Madsuk & Seel, 2009), and to measure how maps change over time and how observed changes over time contribute to convergence in shared understanding between learners (Jeong, 2010a). 

However, students’ maps can vary widely in accuracy when maps are compared to expert maps (Ruiz-Primo & Shavelson, 1996; Scavarda et al., 2004). Based on their review of the empirical research, Ruiz-Primo & Shavelson (1996) concluded that maps (including the assessment rubrics) should not be used in the classroom for large-scale assessments until students’ facility, prior knowledge/skills with using maps, and associated training techniques are thoroughly examined. In general, identifying learners’ prior knowledge/skills and the gap between learners’ current versus target skills is the first and most important step to designing a solution to an instructional problem (in this case, training students on how to construct accurate maps). Although Ruiz-Primo et al. (1997) found that requiring students to hierarchically structure their maps did not produce any gains in the match between students’ and expert maps, their operational definition of hierarchical structure was problematic. Given all of the above, new research is needed to: a) identify tendencies and potential weaknesses in the way students construct causal maps with minimal or no prior instruction on causal mapping; and b) determine to what extent each noted weakness affects the accuracy of students’ maps. A clear understanding of the weaknesses and their effects will provide the foundation on which to identify the most appropriate guidelines, constraints, and interventions for improving the map construction process and quality/accuracy of students’ causal maps.

Using the case study method, this study examined the accuracy of students’ maps based on the ratio of correctly/incorrectly identified root causes. This study also examined accuracy in terms of total number of correctly identified root links (links stemming from root causes) to gauge how well students understand the causal chains, mechanisms, and mediating factors underlying cause-effect relationships between root causes and outcomes. These measures were tested for their correlations with three attributes: total number of causal links (total links), ratio of right/left pointing links (temporal flow), and distance of outcome node from left edge of screen (location of the node representing the final effect/outcome). The purpose of the tests were to determine which attributes are correlated with (and possibly contributes to) accuracy. The findings can then be used to identify which attributes to promote through software interface constraints (e.g., limit total number of links, each newly created link points by default from left to right, position by default final outcome nodes at right most portion of screen) – constraints that can be implemented in future versions of our mapping software called jMAP (Jeong, 2010b), specifically developed and used for this case study. To address these goals, this case study examined two research questions:

1. Which structural attributes (total links, temporal flow, outcome node location) are correlated with accuracy?
2. What is the relative magnitude of each attribute’s impact on accuracy? 

Method

Sixteen graduate students in an online course on collaborative learning used jMAP (Fig.1) to graphically organize into a causal diagram fourteen pre-selected variables believed to influence learning in collaborative groups. Each student individually constructed an initial map, compared and discussed their maps using an online discussion thread designated for each casual link, and then revised and submitted their final maps. Both initial and final maps were analyzed in this study. 
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[image: image2.png]Figure 1. Student 8’s map is superimposed over the instructor’s map to reveal green and gray links
‘that identify those in the instructor’s map that are present and missing in the student’s map.
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[image: image4.png]Figure 2. Matrix representation of student §’s causal map (causes listed by row, effects listed by column)
ith green cells representing causallinks correctly identified and blank columns identifying root causes.
‘Student explanations for causal links are stored as comments identified by red triangles.





The number of total links was measured by counting all links in each student’s diagram. Temporal flow was computed by dividing the number of right pointing links to the number of left pointing links. Links that were perfectly aligned in a vertical position (pointing straight up or straight down) were not included in the computation. Position of outcome node was based on the number of pixels separating the left edge of the screen to the left edge of the outcome node. By using the matrices automatically generated by jMAP (Fig.2) to identify the causal root links and root cause nodes shared between each student’s map and the instructor’s map, the ratio of correct/incorrect root nodes and the number of correct root links were computed. The diagrams produced before and after discussions were analyzed using two regression models: 
Model 1:  Ratio of correct root causesi=β0 + β1(number of total linki) + β2(ratio of temp flowi) + β3(outcome node location)

Model 2:  Number of correct root linksi=β0 + β1(number of total linki) + β2 (ratio of temp flowi) +  β3 (outcome node location)
Results
 
Correlations between attributes and accuracy. In the maps produced prior to discussion, temporal flow and outcome node position were both negatively correlated to the number of correct root links. In the maps produced following discussion, temporal flow was positively correlated with ratio of correctly/incorrectly root causes, while total causal links was negatively correlated with number of correct causal root links.
[image: image5.png]Table 1 Correlations between variables

Variables L TF NP RC
Prior to online discussion

Total causal links (TL) 1

Ratio of temporal flow (TF) 028 1

Outcome node position (NP) 334 254 1

ratio of correct/incorrect root causes (RC)  -.213 -432 -381 1

number of correct rootlinks (RL) -.165 -461* -465* 541%
Following online discussion

Total causal links (TL) 1

Ratio of temporal flow (TF) .023 1

Outcome node position (NP) 159 303 1

ratio of correct/incorrect root causes (RC)  -.261 .688* 085 1

number of correct rootlinks (RL) -523* 352 .153 492
*p=<.05 **p<.001





Relative magnitude of attribute impact. In the one and only one regression model that was found to be statistically significant (ratio of correct/incorrect root causes discussions), temporal flow was the most highly and positively correlated to the ratio of correct/incorrect root causes, while total causal links was more strongly and negatively correlated than the outcome node position. In the one regression model that approached statistical significance (number of root links after discussion), total causal links was the most highly and negatively correlated to the number of correct root links, while temporal flow was more strongly and positively correlated than outcome node position.
[image: image6.png]Table 2 The unstandardized and standardized regression coefficients for the variables

Vatiables ratio of correct/incorrect root causes ‘number of correct root links
B SE B B SE B
Prior to online discussion
Total causal links -448 1.606 -.065 -015 .037
Ratio of temporal flow -.805 508 62 -.020 012
Outcome node position -.040 .037 -267 -.001 .001
F(3,15)=1.840,p=.183 Adj R?=.123 F(3,15)=2.682, p=_.084 Adj R*
Following online discussion
Total causal links -2.935 2.176 -263 -247 .099
Ratio of temporal flow 796 223 7220 014 010
Outcome node position -.021 .047 -.092 .001 .002

F(3.12)=5.025, p = 017 Adj R?=446 Powe

=73

F(3.12)=295.p= 076 Adj R*

*p<.05 *p<.001




Discussion

The findings in this case study (though not conclusive) suggests that asking students to position nodes in temporal sequence might inhibit students’ ability to identify the correct root causes when students are producing their initial causal maps (before discussion). It is possible that when students re-position one node closer to another node (but farther away from other nodes) based on the consideration of their temporal relationship, the nodes increased distance from the other nodes (and reduction in their visual proximity) may lead students to skip and omit from consideration other possible relationships with the given node. Imposing temporal flow may inhibit brainstorming on all possible relationships between nodes and push students to prematurely take a specific direction that leads to lesser quality solutions.

However, the findings also suggest that once students discuss their maps (and have winnowed down in number the possible cause-effect relationships) imposing temporal sequence could help students correctly identify root causes. Increasing temporal flow by one standard deviation while holding total causal links and outcome node location constant can potentially increase the ratio of correct/incorrect root causes by .722 standard deviations. One possible explanation for this finding is that the process of positioning nodes in temporal sequence creates another opportunity (in addition to the discussions) for students to refine the causal chains and identify the causes that mediate root causes and outcomes. This finding is somewhat contrary to previous findings where hierarchical structure was found to have no effect on accuracy (Ruiz-Primo, 1997). However, computing temporal flow in each student’s map in this case study did not pose any methodological problems. 

The other main finding in this study suggests that if a limit is imposed on the number of causal link within a map to promote parsimony (or if students are encouraged to reduce the number of causal links in their maps), students may be able correctly identify more root cause links. This finding was consistent with the negative correlation found between total links and ratio of correct/incorrect root causes. A plausible explanation for this finding is that the students that tended to insert excessive numbers of links into their maps may have been the students that: (a) tended to link all nodes that are causally related regardless of whether they are directly or indirect related; and (b) are not able to identify the correct causal chains and mechanisms underlying the complex phenomenon/problem.
Future Research & Development

The findings in this study are not conclusive. Nevertheless, the preliminary findings provide ideas as to what and when to impose specific types of tasks and/or software constraints on the causal mapping process. Some issues that require further attention and research are: a) replicate this study using a substantially larger sample and data corpus; b) set the default location of the outcome node at the center of the screen rather than to the right portion of the screen in order to fully assess the effects of initial node location; c) measure final node location relative to the right edge of the screen (rather than left edge) if temporal flow if left to right rather than right to left; d) integrate these rules/constraints into jMAP to conduct a controlled experimental study to test and determine the effects of limiting number of links, manipulating the option to create links that can point in any or in only one direction, and intentionally varying the default location of outcome nodes; e) consider how the effects of each constraint vary when examining causal maps across different domains or topics that are or are not naturally temporal in nature; and f) test other metrics for assessing accuracy. 
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